Оптико-волоконная связь: особенности, плюсы и минусы. ВОЛС – почему они столь популярны?

Волоконно-оптические линии связи: принцип действия и возможности

Что такое оптоволокно?

Связь на основе оптико-волоконных сетей формируется по принципу электромагнитного излучения, за счет которого передается сигнал. Физическим носителем выступают световоды, характеризующиеся стойкостью к помехам и высокой пропускной способностью. Итак, что такое световод и какое отношение он имеет к передаче данных? Это волокно, выполненное на основе стекла с некоторыми добавками, благодаря которым изготовитель может варьировать отдельные оптические характеристики. Как минимум, требуется нанесение полимерного покрытия, защищающего световод от внешних повреждений. Собственно, и это волокно неоднородно в своей структуре. Оно состоит из сердцевины диаметром порядка 8-10 мкм, а также окружающей оболочки, образующей цилиндр толщиной порядка 100-125 мкм. Принцип работы оптико-волоконного канала связи заключается в способности световода обеспечивать внутреннее отражение электромагнитных волн с определенными показателями преломления. Условный луч света в процессе движения внутри оптоволокна отражается от оболочки изнутри, не покидая контур. Таким образом выполняется доставка сигнала с разными величинами потерь.

Принцип действия

И так мы уже разобрались, что такое ВОЛС, но каким же образом по ним передаётся информация. В подобных сетях используется оптоволокно. Оно состоит из центральной жили и имеет небольшой размер. Жила обычно сделана как вы, наверное, уже догадались из стекла. Именно по жиле и идёт передача данных пучком света.

Но тут сразу же встаёт вопрос – а как увеличить передачу на большее расстояние? Для этого используют второй слой стекла, который обволакивает центральную жилу и при передаче информации отражает свет. Ранее думали использовать в качестве отражения зеркала или подобие зеркальных поверхностей – но как оказалось, такой материал был бы очень дорогим.

Вы когда-нибудь бывали на море или озере в лучах заката. Помните, как свет от солнца под большим углом отражался от воды. Хотя как вы, наверное, знаете, вода прозрачная. Но при увеличении угла и плотности между двумя материалами – свет начинает отражаться от разных сред.

Именно эту технологию и используют в оптоволоконной связи. Сердечник и внешняя оболочка имеют разную плотность и структуру, из-за чего луч света, отражаясь, распространяется куда дальше. Для передачи и воспроизведения света используется полупроводниковый или диодный лазер.

Если окунуться в историю, то первыми трудами, который заложили основу «оптики» – было исследование Даниелем Колладоном и Жаком Бабинеттом. Они в первую очередь изучали возможности преломления света. Но если быть точнее, то прародителем стал Кларенс Хаснелл – он в первые применил свет для передачи изображения через специальные трубки.

Передатчик

Типичным формирователем луча выступают полупроводниковые светодиоды, включая твердотельные лазеры. Ширина спектра сигнала, излучаемого типичным p-n-переходом, составляет 30-60 нм. КПД первых твердотельных устройств едва достигал 1%. Основой связных светодиодов чаще выступает структура индий-галлий-мышьяк-фосфор. Излучая более низкую частоту (1,3 мкм), приборы обеспечивают значительное рассеивание спектра. Результирующая дисперсия сильно ограничивает битрейт (10-100 Мбит/с). Поэтому светодиоды пригодны для построения локальных сетевых ресурсов (дистанция 2-3 км).

Частотное деление с мультиплексированием осуществляется многочастотными диодами. Сегодня несовершенные полупроводниковые структуры активно вытесняются вертикальными излучающими лазерами, значительно улучшающими спектральные характеристики. повышающими скорость. Цена одного порядка. Технология вынужденного излучения приносит гораздо более высокие мощности (сотни мВт). Когерентное излучение обеспечивает КПД одномодовых линий 50%. Эффект хроматической дисперсии снижается, позволяя повысить битрейт.

Малое время рекомбинации зарядов позволяет легко модулировать излучение высокими частотами питающего тока. Помимо вертикальных применяют:

  1. Лазеры с обратной связью.
  2. Резонаторы Фабри-Перо.

Высокие битрейты дальних линий связи достигаются применением внешних модуляторов: электро-абсорбционные, интерферометры Маха – Цендера. Внешние системы устраняют необходимость применения линейной частотной модуляции напряжением питания. Обрезанный спектр дискретного сигнала передаётся дальше. Дополнительно разработаны другие методики кодирования несущей:

  • Квадратурная фазовая манипуляция.
  • Ортогональное мультиплексирование с частотным разделением.
  • Амплитудная квадратурная модуляция.

Передатчик сформирован цифро-аналоговым преобразователем, драйверным усилителем, модулятором Маха-Цендера. Применение высоких форматов модуляции (выше 4 квадратур), битрейтов (выше 32 Гбод) снижает эффективность ввиду наличия паразитных эффектов. Линейные погрешности сформированы цифро-аналоговым преобразователем, неидеальностью системы синхронизации. Нелинейные искажения вызваны эффектом насыщения драйверного усилителя, модулятора. Меры противодействия существенно повышают скорость, позволяя использовать модуляции высоких квадратур.

Процедуру осуществляют цифровые сигнальные процессоры. Старые методики компенсировали лишь линейную составляющую. Беренджер выразил модулятор рядами Вина, ЦАП и усилитель смоделировал усечёнными, времянезависимыми рядами Вольтерры. Кхана предлагает использовать полиномиальную модель передатчика вдобавок. Каждый раз коэффициенты рядов находят, используя архитектуру непрямого изучения. Дутель записал множество распространённых вариантов. Фазная перекрёстная корреляция и квадратурные поля имитируют несовершенство систем синхронизации. Аналогично компенсируются нелинейные эффекты.

Приёмники

Фотодетектор совершает обратное преобразование свет – электричество. Львиная доля твёрдотельных приёмников использует структуру индий-галлий-мышьяк. Иногда встречаются pin-фотодиоды, лавинные. Структуры металл-полупроводник-металл идеально подходят для встраивания регенераторов, коротковолновых мультиплексоров. Оптикоэлектрические конвертеры часто дополняют трансимпедансными усилителями, ограничителями, производящими цифровой сигнал. Затем практикуют восстановление синхроимпульсов с фазовой автоподстройкой частоты.

Отличие от витой пары

Если окунуться в 2000-е годы, то возможно кто-то вспомнит, что тогда в России и других странах СНГ использовался только интернет по типу aDLS. Когда интернет пришёл в РФ, то страна была просто не готова к этому. По всей стране не было ничего подходящего, чтобы передавать информацию от компьютера к компьютеру.

Именно тогда пришла идея использовать старые телефонные провода. Напомню, что это обычные два проводка без оплётки и дополнительной защиты. В результате интернет всё же появился, но имел очень маленькую скорость. Также многие жаловались, на лаги, прерывания, постоянное отваливающийся интернет.

Все эти проблемы были связаны как раз со способом передачи информации. По двум проводкам без оплётки очень сложно было передавать данные – так как при передаче многие пакеты терялись или изменялись в результате помех от электромагнитных волн. На смену телефонным линиям пришла витая пара.

Витая пара — это скрученные пары проводов во одной внешней оплётке. Чаще всего используется именно витая пара с 4 парами (8 проводков). Данный вид коммуникации уже стал намного надёжнее телефонного кабеля. В качестве защиты от радиоволн придумали нехитрую штуку – а именно скручивание.

По одной паре передаётся одна и та же информация. При скручивании провод постоянно меняет своё положение. В результате первый проводок находится с внешней стороны и принимает весь удар окружающей среды. Второй провод прячется за него. Так передаваясь, информация по паре проводов в конце складывается. В результате также вычитается помехи.

Скорость при это выросла в несколько раз. Но была проблема быстрого затухания сигнала. Подобные провода могут бить до 100 метров, не дальше. А при увеличении скорости будет падать и диапазон действия.

Вот тут на смену пришла оптоволоконная связь. Скорость выросла ещё сильнее, но также увеличилось дальность отправки пакета. Если раньше приходилось каждые 100 метров устанавливать повторители, то при передаче с помощью «оптики» дальность стала больше на несколько километров.

Но что самое интересное – волоконная связь почти полностью защищена от электромагнитного воздействия. Также подобные провода почти неподвержены температурным скачкам и могут работать как в сильную жару, так и в дикий холод.

Частота передачи с помощью света выше поэтому минимальная скорость начинается от 1 Гбит в секунду. При передаче в витой паре при задействовании всех пар скорость будет 1 Гбит в секунду. Но при этом провод будет очень дорогим, так как для достижения такого результата нужно защитить каждый провод «экраном» от воздействия внешней среды.

К недостаткам ВОЛС можно отнести только сложность в монтаже и сварке. Для этого нужно специальное оборудования и знания. При «сварке» или по-другому соединении двух оптических кабелей – нужно добиться идеального соединения между центральными жилами и внешним стеклом. Иначе свет будет затухать именно на этом участке или коэффициент преломления будет не правильным.

Характеристики оптических волокон

Пожалуй, не найдется специалиста-кабельщика, работающего с оптическим волокном, который не знал бы отличие многомодовых волокон от одномодовых. Мы не собираемся повторять прописные истины в данной статье. Остановимся на конкретных характеристиках оптоволокон, вызывающих, подчас, противоречивое толкование.

Оптические волокна допускают распространение сигналов передачи данных вдоль них при условии, что световой сигнал вводится в волокно под углом, обеспечивающим полное внутреннее отражение на границе раздела двух сред из двух типов стекла, имеющего различные показатели преломления. В центре сердцевины находится особо чистое стекло с показателем преломления 1.5. Диаметр сердцевины находится в пределах от 8 до 62,5 мкм. Окружающее ядро стекло, называемое оптической оболочкой, немного менее свободное от примесей, имеет показатель преломления 1.45. Общий диаметр сердцевины и оболочки находится в пределах от 125 до 440 мкм. Поверх оптической оболочки наносят полимерные покрытия, укрепляющие волокно, защитные нити и внешнюю оболочку.

При вводе оптического излучения в волокно, луч света, падающий на его торец под углом больше критического, будет распространяться вдоль границы раздела двух сред в волокне. Каждый раз, когда излучение попадает на границу между ядром и оболочкой, оно отражается обратно в волокно. Угол ввода оптического излучения в волокно определяется максимально допустимым углом ввода, называемым числовой апертурой или апертурой волокна. Если вращать этот угол вдоль оси сердцевины, формируется конус. Любой луч оптического излучения, падающий на торец волокна в пределах этого конуса, будет передан дальше по волокну.

Находясь внутри сердцевины, оптическое излучение многократно отражаетсяот границы раздела двух прозрачных сред, имеющих различные показатели преломления. Если физические размеры сердцевины оптического волокна существенные, отдельные лучи света будут введены в волокно и, в последующем, претерпевают отражение под разными углами. Поскольку ввод лучей оптической энергии в волокно был осуществлен под разными углами, то и расстояния, которые они проходят, будут также различными. В результате, они достигают приемного участка волокна в разное время. Импульсный оптический сигнал, прошедший по волокну будет расширен, по сравнению с тем, который был отправлен, следовательно, ухудшается и качество переданного по оптоволокну сигнала. Это явление получило название модовой дисперсии (DMD).

Другой эффект, который тоже вызывает ухудшение передаваемого сигнала, получил название хроматической дисперсии. Хроматическая дисперсия обусловлена тем, что световые лучи разных длин волн распространяютсявдоль оптического волокна с различной скоростью. При передаче серии световых импульсов через оптоволокно, модовая и хроматическая дисперсии, в конечном итоге, могут вызвать слияние серии в один длинный импульс, возникновению интерференции бит сигнала и потере передаваемых данных.

Еще одной типичной характеристикой оптического волокна является затухание. Стекло, используемой для изготовления сердцевины оптического волокна (ОВ), является очень чистым, но, все же, не идеально. В результате, свет может поглощаться материалом стекла в оптоволокне. Другими потерями оптического сигнала в волокне могут быть рассеяние и потери, а также затухание от плохих оптических соединений. Потери при соединении оптоволокон могут быть вызваны смещением сердцевин волокна или его торцевых поверхностей, которые не были отполированы и очищеныдолжным образом.

Передача света стеклом: история

Явление рефракции, делающее возможной тропосферную связь, нелюбимо учениками. Сложные формулы, неинтересные примеры убивают любовь студента к знаниям. Идею световода родили далёкие 1840-е годы: Дэниэл Колладон, Жак Бабинэ (Париж) пытались приукрасить собственные лекции заманчивыми, наглядными экспериментами. Преподаватели средневековой Европы плохо зарабатывали, поэтому изрядный приток студентов, несущих деньги, выглядел желанной перспективой. Лекторы заманивали публику любыми способами. Некий Джон Тиндал воспользовался идеей 12 лет спустя, гораздо позже выпустив книгу (1870), рассматривающую законы оптики:

  • Свет проходит границу раздела воздух-вода, наблюдается рефракция луча относительно перпендикуляра. Если угол касания луча к ортогональной линии превышает 48 градусов, фотоны перестают покидать жидкость. Энергия полностью отражается назад. Предел назовём лимитирующим углом среды. Водный равен 48 градусов 27 минут, у силикатного стекла – 38 градусов 41 минута, алмаза – 23 градуса 42 минуты.

Зарождение XIX столетия принесло линии Петербург – Варшава световой телеграф протяжённостью 1200 км. Регенерация операторами послания проводилась каждые 40 км. Сообщение шло несколько часов, мешали погода, видимость. Появление радиосвязи вытеснило старые методики. Первые оптические линии датированы концом XIX века. Новинка понравилась… медикам! Гнутое стеклянное волокно позволяло освещать любые полости человеческого тела. Историки предлагают следующую временную шкалу развития событий:

  1. 1854 – Джон Тиндалл демонстрирует Королевскому обществу (Великобритания) возможность изгибания траектории распространения света водным потоком.
  2. 1880 – Александр Грэхэм Белл изобретает Фотофон, передающий голос посредством луча. Изобретатель ловил солнечного зайчика, заставлял зеркало вибрировать в такт звучанию речи. Приёмный детектор декодировал послание, динамик передавал заложенное сообщение. Пасмурные дни заставили Белла забросить исследования, занявшись более практическими делами – наживанием прибыли.
  3. Параллельно Вильям Вилер изобрёл систему световых труб, снабжённых отражающим чулком. Каналы разносили свет дуговой лампы всему дому.
  4. 1888 – Медицинская бригада Рота и Ройса (Вена) придумала освещать гнутыми стеклянными стержнями полости человеческого тела.
  5. 1895 – французский инженер, Генри Сэнт-Рене, создал группу витиевато закруглённых кремниевых волосков, осуществляя проект телевизионного экрана.
  6. 1898 – американец Дэвид Смит патентует гнутый стеклянный стержень для использования хирургами.

Идею Генри Сэнт-Рене продолжили поселенцы Нового света (1920-е), задумавшие улучшить телевидение. Кларенс Ханселл, Джон Логи Бэйрд стали пионерами. Десять лет спустя (1930) студент-медик Хайнрих Ламм доказал возможность передачи стеклянными направляющими изображения. Ищущий знаний задумал осмотреть внутренности тела. Качество изображения хромало, попытка получить Британский патент провалилась.

Рождение волокна

Независимо голландский учёный Абрахам ван Хил, британец Харольд Хопкинс, Нариндер Сингх Капани изобрели (1954) волокно. Заслуга первого в идее покрыть центральную жилу прозрачной оболочкой, имевшей низкий коэффициент преломления (близкий к воздуху). Защита от царапин поверхности сильно улучшила качество передачи (современники изобретателей видели главное препятствие использования волоконных линий в больших потерях). Британцы тоже внесли серьёзный вклад, собрав пучок волокон численностью 10.000 штук, передали изображение на дистанцию 75 см. Заметка «Гибкий фиброскоп, использующий статическое сканирование» украсила журнал Nature (1954).

1956 год принёс миру новый гибкий гастроскоп, авторы Базиль Хиршовиц, Вильбур Петерс, Лоуренс Кертисс (Университет Мичиган). Особенностью новики являлась стеклянная оболочка волокон. Элиас Снитцер (1961) обнародовал идею создания одномодового волокна. Столь тонкого, что внутри умещалось лишь одно пятнышко интерференционной картины. Идея помогла медикам осмотреть внутренности (живого) человека. Потери составили 1 дБ/м. Потребности коммуникаций простирались гораздо дальше. Требовалось достичь порога 10-20 дБ/км.

1964 год считают переломным: жизненно важную спецификацию опубликовал доктор Као, введя теоретические основы дальней связи. Документ активно использовал приведённую выше цифру. Учёный доказал: снизить потери поможет стекло высшей степени очистки. Германский физик (1965) Манфред Бёрнер (Телефункен Ресёрч Лабс, Ульм) представил первую работоспособную телекоммуникационную линию. NASA немедленно передало вниз лунные снимки, используя новинки (разработки были секретными). Несколько лет спустя (1970) трое работников Корнинг Глэс (см. начало топика) подали патент, реализующий технологический цикл выплавки оксида кремния. Три года бюро оценивало текст. Новая жила увеличила пропускную способность канала в 65000 раз относительно медного кабеля. Команда доктора Као немедля сделала попытку покрыть значительное расстояние.

Военные компьютеры (1975) противовоздушной обороны США (секция NORAD, Шайенские горы) получили новые коммуникации. Оптический интернет появился очень давно, раньше персональных компьютеров! Двумя годами позже тестовые испытания телефонной линии длиной 1,5 мили (пригород Чикаго) успешно передали 672 голосовых канала. Стеклодувы трудились неустанно: начало 80-х привнесло появление волокна с затуханием 4 дБ/км. Оксид кремния заменили другим полупроводником – германием.

Скорость производства высококачественного кабеля технологической линией составила 2 м/с. Хими Томас Менса разработал технологию, повысившую двадцатикратно указанный лимит. Новинка, наконец, стала дешевле медного кабеля. Дальнейшее изложено выше: последовал всплеск внедрения новой технологии. Шаг расстановки репитеров составил 70-150 км. Волоконный усилитель, легированный ионами Эрбия, резко снизил стоимость возведения линий. Времена тринадцатой пятилетки принесли планете 25 миллионов километров волоконно-оптических сетей.

Новый толчок развитию дало изобретение фотонных кристаллов. Первые коммерческие модели принёс 2000 год. Периодичность структур позволила значительно повысить мощность, конструкция волокна гибко подстраивалась, следуя частоте. В 2012 году Телеграфная и телефонная компания Ниппона достигла скорости 1 петабит/с на дальности 50 км одним-единственным волокном.

Военная промышленность

Достоверно известна история шествия военной промышленности США, опубликованной в Монмаут Месседж. В 1958 году менеджер по кабельному хозяйству форта Монмаут (Сигнал Корпс Лабс армии Соединённых Штатов) рапортовал о вреде молний, осадков. Чиновник потревожил исследователя Сэма Ди Вита, попросив найти замену зеленеющей меди. Ответ содержал предложение попробовать стекло, фибер, световые сигналы. Однако инженеры дяди Сэма того времени оказались бессильны решить задачку.

Жарким сентябрём 1959 Ди Вита спросил лейтенанта второго ранга Ричарда Штурцебехера, известна ли тому формула стекла, способного передавать оптический сигнал. Ответ содержал сведения, касающиеся оксида кремния – пробы на базе Университета Альфреда. Измеряя коэффициент рефракции материалов микроскопом, Ричард нажил головную боль. 60-70% стеклянная пудра свободно пропускала лучезарный свет, раздражая глаза. Держа в уме необходимость получения чистейшего стекла, Штурцебехер изучал современные методики производства при помощи хлорида кремния IV. Ди Вита нашёл материал пригодным, решив предоставить правительству переговоры со стеклодувами компании Корнинг.

Чиновник отлично знал рабочих, однако решил предать дело огласке, дабы завод получил государственный контракт. Между 1961 и 1962 идея использования чистого оксида кремния была передана исследовательским лабораториям. Федеральные ассигнования составили порядка 1 млн. долларов (промежуток 1963-1970). Программа окончилась (1985) развитием многомиллиардной индустрии производства оптоволоконных кабелей, начавших стремительно замещать медные. Ди Вита остался работать, консультируя промышленность, прожив 97 лет (год смерти – 2010).

Фотонно-кристаллический фибер

Новая разновидность кабелей образована набором трубок, конфигурация напоминает скруглённые пчелиные соты. Фотонные кристаллы, напоминают природный перламутр, образуя периодические конформации, отличающиеся коэффициентом преломления. Некоторые длины волн внутри таких трубок затухают. Кабель демонстрирует полосу пропускания, луч претерпевая брэгговскую рефракцию отражается. Благодаря наличию запрещённых зон когерентный сигнал двигается вдоль световода.

Первая конструкция Йе и Йарива (1978) представлена двумя и более концентрическими слоями разных материалов. Конструкции постоянно дополняются свежими видами. Рассел (1996, автор термина фотонно-кристаллический фибер) представил сотовый набор волокон, двумя годами позже догадались сердцевину заменить пустотой. Достигнутые затухания впечатляют:

  1. Полые – 1,2 дБ/км.
  2. Сплошные – 0,37 дБ/км.

Технология производства сродни традиционной. Сравнительно толстую заготовку постепенно вытягивают. Выходит волос длиной в километры. Материалы проходят стадию исследований.

Как действует передача данных через оптоволокно

Так передается свет по оптоволокну

Передача сигнала через обычные провода с помощью электрического тока упирается в два препятствия, которые ограничивают предел скорости.

  • Сигнал с высокой частотой быстро затухает на большом расстоянии.
  • У токов высокой частоты большие потери энергии через излучение в окружающую среду.
  • Рядом находящиеся провода и оборудование наводят помехи на сигнал.

С этими негативными факторами борются, применяя промежуточные усилители, экраны, свивая провода. Но всему есть предел. На сегодня повышение скорости передачи информации, в основном, решается с помощью разделения ее на параллельные потоки. Например, USB 3.0 отличается от более раннего USB 2.0 тем, что для передачи данных используются не одна, а несколько пар проводов.

Кардинально решить вопрос смогли только с помощью оптоволоконных кабелей. В них сигнал передается с помощью света, точнее лазерного излучения, которое слабо затухает на больших расстояниях. Для связи используются стеклянные волокна, в которых благодаря специально подобранным свойствам сердечника и внешнего слоя проявляется эффект полного отражения светового пучка.

Также благодаря небольшому диаметру они гибкие (с тонкими гибкими стеклянными волокнами мы встречаемся и в таких привычных материалах как стекловата и стеклоткань).

Работает система чрезвычайно просто — с одной стороны кабеля модулируют излучение лазера, кодируя в нем информацию, которую расшифровывает фотоприемник на другом конце. По одному оптоволокну можно передавать множество потоков, параллельно используя лазеры с разным спектром.

Скорость передачи по оптоволокну на порядки превышает возможности металлических проводников и достигает нескольких терра бит в секунду.

Имеет оптоволокно и другие преимущества:

  • Абсолютную защиту от внешних помех, навести посторонний сигнал на такой кабель невозможно.
  • Благодаря отсутствию металлических проводников такие линии не могут быть повреждены пробоем изоляции от высокого напряжения, поэтому они еще и безопасны для пользователей.
  • Современный оптоволоконный кабель имеет небольшой диаметр и занимает много места в лотках и канализации.
  • Считать информацию не повреждая кабель, и не нарушая его работоспособности известными методами (например, фиксируя электромагнитное излучение) невозможно.

Еще одно достоинство оптоволокна — оно не представляет интереса для злоумышленников, так как не содержит цветных металлов.

Но есть и некоторые минусы:

  • такие кабеля нельзя соединить обычной пайкой или скруткой, требуется сваривать стекло или применять специальные соединительные элементы;
  • стекловолоконные кабели нельзя изгибать по малому радиусу;
  • оборудование для приема и передачи сложное, хотя при отработанном и массовом производстве, как и для любой электроники, цена него постоянно снижается.

Как работает технология PON

На первый взгляд для построения абонентской сети можно сделать двумя способами:

  • Провести от базовой станции кабеля к каждому пользователю. Так действует стандартная городская сеть – от АТС пары проводов идут к каждому телефону.
  • Провести несколько магистральных линий с большой пропускной способностью, на которые подключаются активные коммутаторы — свитчи, которые распределяют доступ между абонентами. Так строились первые сети с использованием витых пар (LAN) а позже и оптоволокна в качестве магистральных линий. Например, к дому шла оптоволоконная линия, доступ к которой по квартирам распределяли уже с помощью витых пар подключенных через свитчи. Такие сети назывались FTTB (Fiber To Building) — волокно до здания.

Технология PON работает по несколько иному принципу:

  • Активное оборудование монтируется только у провайдера и клиента.
  • На одно волокно может быть подключено до 128 приемников. Сеть строится по принципу дерева, где от линии идут ветви отростки, а от них ветви второго порядка и так далее.
  • Все абонентские устройства, подключенные к одному волокну, получают доступ к сети с разделением по времени. То есть сразу передается пакет информации одному клиенту, затем второму и так по очереди. Из-за большой пропускной способности линии это ни в коей мере не снижает скорости передачи данных. Также осуществляется связь и в обратном направлении, но используется другая длина волны излучения лазера.

Такой подход стал возможен благодаря тому, что используются специальные устройства — сплитеры. Они разделяют поток одного волокна на несколько волокон. Потери излучения, конечно, при этом велики, но их компенсируют использованием мощных лазеров, на сегодня цена на них не столь уж и большая.

Достоинства сплитеров в том, что они сравнительно несложны, не требуют подключения к электросетям (это пассивный элемент отсюда и название технологии) и обслуживания.

Эти особенности технологии PON позволяют развивать сети в любых условиях. Если для более старых методов раздачи интернета в отличие от города, где разместить обычные свитчи и сервера можно без проблем на любом чердаке или подвале и нет проблем с подключением электропитания, в сельской местности возникали большие затруднения, для PON таких проблем нет.

Сплитер можно повесить на любой стене или опоре линии электропередач и даже разместить в колодце, устройства не боятся влаги.

Сеть PON

Чтобы было более понятно, как работает технология PON, приведем схему, как организована такая сеть.

Схема PON сети

Немного поясним схему:

  • У поставщика интернета или на АТС находится OLT (на английском — Optical Linear Terminal – Оптический Линейный Терминал) с которого идет раздача. К нему подключены кабельные линии. Это довольно компактное устройство на фото ниже показана стойка, которая может обслужить несколько тысяч абонентов.
Стойка OLT
  • От каждого OLT отходят несколько кабелей, на схеме показан только один, на четыре жилы. Их разводят по всему обслуживаемому участку в кабельной канализации, по опорам или другим способом.

Благодаря высокой мощности лазеров протяженность кабелей может достигать до 60 километров, хотя обычно производители гарантируют качественный сигнал на расстоянии до 20 км, но и этого вполне достаточно для среднего города.

  • На каждую жилу вешают сплитер (на схеме это коробки с надписью Spliter), от них идут ответвления либо на другие разветвители, либо сразу к клиентам. На схеме показано разветвление на два кабеля вверху и на четыре внизу, но сигнал может ветвиться и на большее количество кабелей, хотя многовыходные устройства обычно применяются редко.
Простейший сплитер
Сплитер делящий сигнал на 16 волокон
  • После первого сплитера может быть установлено еще несколько.
  • В конце линии у абонента ставится ONU (на английском языке Optical Network Unit – Оптическая Сетевая Единица) его могут еще именовать ONT (на английском Optical Network Terminal – Оптический Сетевой Терминал) к которому можно подключить LAN кабеля. Иногда устройство называют оптическим модемом.
Оптический модем
  • Кроме LAN соединений у ONU почти всегда есть розетки для телефона, так как почти всегда подключение по PON предусматривает пакет услуг: интернет, телефон, телевидение.

Как видно из схемы, сеть легко можно развивать без больших затрат. Например, в верхней части вместо первого по счету ONU установить еще один сплитер, к которому можно подключить уже два абонента. Еще можно заменить двухканальные разветвители на четырехканальные, такие как в нижней части схемы.

Какими преимуществами обладает оптический кабель?

Более высокая пропускная способность, волоконно-оптические кабели могут передавать гораздо больше данных, чем медные кабели того же диаметра.

В отличие от медных кабелей, между оптическими волокнами нет «перекрестных помех» (электромагнитных помех), поэтому они более надежно передают информацию с лучшим качеством сигнала. Им нестрашны грозовые и электростатические разряды. Оптико-волоконные кабели безопасные, они некогда не ударят электрическим током.

Оптическое волокно более тонкое и имеет меньшие габариты и вес, обладает большей прочностью на растяжение, чем медные или стальные волокна того же диаметра. Он гибкий, легко изгибается и не подвержен коррозии, в отличии от медного кабеля.

Более дешёвое сырьё для производства, в отличие от меди. Это означает, что оптико-волоконный кабель намного дешевле медного.

Недостатки оптоволоконного типа связи

  • Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  • Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Область применения ВОЛС

Как уже было сказано выше, волоконно-оптические кабели (ВОК) используются для передачи сигналов вокруг (между) зданий и внутри объектов. При построении вешних коммуникационных магистралей предпочтение отдаётся оптическим кабелям, а внутри зданий (внутренние подсистемы) наравне с ними используется традиционная витая пара. Таким образом, различают ВОК для внешней (outdoor cables) и внутренней (indoor cables) прокладки.

К отдельному виду относятся соединительные кабели: внутри помещений они используются в качестве соединительных шнуров и коммуникаций горизонтальной разводки – для оснащения отдельных рабочих мест, а снаружи – для объединения зданий.

Монтаж волоконно-оптического кабеля осуществляется с помощью специальных инструментов и приборов.

Применение оптико-волоконной связи в России

Как и в других странах с передовым технологическим развитием, в России оптоволокно в первую очередь находит свое место в отрасли телекоммуникационной связи. Однако это не единственная сфера, осваивающая данную технологию. Оптические волокна используются в измерительном оборудовании, в рентгеновских аппаратах (в том числе МРТ), гироскопах и охранно-сигнализационных комплексах. При этом методики технической интеграции зачастую носят схожий характер, что подтверждает и спектр требующихся работников для организации подобных систем. В частности, вакансии для оптико-волоконной связи включают места для специалистов по сварочным работам, монтажников и проектировщиков инжиниринговых систем То же самое касается сферы технического обслуживания оптико-волоконной инфраструктуры.

Перспективы развития оптоволоконной связи

Если массовый рынок потребления пока еще сдержанно настроен к эволюционному процессу перехода на оптоволокно, то передовые мировые корпорации уже заглядывают в будущее, которое открывают технологии оптико-волоконной связи в самых разных сферах. На текущий момент наиболее перспективными направлениями можно назвать распределенные сенсорные системы и волоконные оптические лазеры. Первая технология позволит осуществлять неразрушающий контроль строительных и инженерных сооружений с широким комплексом выходных данных анализа – в частности, с точными показателями температуры, давления и деформационных процессов объекта. Что касается оптико-волоконных лазеров, то их свойства и характеристики излучаемой волны могут обеспечить беспрецедентные возможности при физической обработке твердотельных материалов.

Новые стандарты и технологии ВОЛС:

За последние годы на рынке появилось несколько технологий и продуктов, позволяющих значительно облегчить и удешевить использование оптоволокна в горизонтальной кабельной системе и подключение его к рабочим местам пользователей.
Среди этих новых решений прежде всего хочется выделить оптические разъемы с малым форм-фактором – SFFC (small-form-factor connectors), плоскостные лазерные диоды с вертикальным резонатором – VCSEL (vertical cavity surface-emitting lasers) и оптические многомодовые волокна нового поколения.
Следует отметить, что недавно утвержденный тип многомодового оптического волокна ОМ-3 обладает полосой пропускания более 2000 МГц/км на длине лазерного излучения 850 нм. Данный тип волокна обеспечивает последовательную передачу потоков данных протокола 10 Gigabit Ethernet на расстояние 300 м. Использование новых типов многомодового оптоволокна и 850-нанометровых VCSEL-лазеров обеспечивает наименьшую стоимость реализации 10 Gigabit Ethernet-решений.
Разработка новых стандартов оптоволоконных разъемов позволила сделать оптоволоконные системы серьезным конкурентом медным решениям. Традиционно оптоволоконные системы требовали в два раза большего числа разъемов и коммутационных шнуров, чем медные – в телекоммуникационных пунктах требовалась гораздо большая площадь для размещения оптического оборудования, как пассивного, так и активного.
Оптические разъемы с малым форм-фактором, представленные недавно целым рядом производителей, обеспечивают в два раза большую плотность портов, чем предыдущие решения, поскольку каждый такой разъем содержит в себе сразу два оптических волокна, а не одно, как ранее.
При этом уменьшаются размеры и оптических пассивных элементов – кроссов и т.д., и активного сетевого оборудования, что позволяет снизить в четыре раза расходы на установку (по сравнению с традиционными оптическими решениями).
Следует отметить, что американские органы стандартизации EIA и TIA в 1998 году приняли решение не регламентировать использование какого-либо определенного типа оптических разъемов с малым форм-фактором, что привело к появлению на рынке сразу шести типов конкурирующих решений в данной области: MT-RJ, LC, VF-45, Opti-Jack, LX.5 и SCDC. Также сегодня есть и новые разработки.
Наиболее популярным миниатюрным разъемом является разъем типа MT-RJ, который имеет один полимерный наконечник с двумя оптическими волокнами внутри. Его конструкция была спроектирована консорциумом компаний во главе с AMP Netconnect на основе разработанного в Японии многоволоконного разъема MT. AMP Netconnect на сегодня представила уже более 30 лицензий на производство данного типа разъема MT-RJ.
Своему успеху разъем MT-RJ во многом обязан внешней конструкции, которая схожа с конструкцией 8-контактного модульного медного разъема RJ-45. За последнее время характеристики разъема MT-RJ заметно улучшились – AMP Netconnect предлагает разъемы MT-RJ с ключами, предотвращающими ошибочное или несанкционированное подключение к кабельной системе. Кроме того, ряд компаний разрабатывает одномодовые варианты разъема MT-RJ.
Достаточно высоким спросом на рынке оптических кабельных решений пользуются разъемы LC компании Avaya (http://www.avaya.com). Конструкция этого разъема основана на использовании керамического наконечника с уменьшенным до 1,25 мм диаметром и пластмассового корпуса с внешней защелкой рычажного типа для фиксации в гнезде соединительной розетки.
Разъем выпускается как в симплексном, так и в дуплексном варианте. Основным преимуществом разъема LC являются низкие средние потери и их среднеквадратичное отклонение, которое составляет всего 0,1 дБ. Такое значение обеспечивает стабильную работу кабельной системы в целом. Для установки вилки LC применяются стандартная процедура вклеивания на эпоксидной смо ле и полировки. Сегодня разъемы нашли свое применение у производителей 10 Гбит/с-трансиверов.

Заключение

Связь на базе оптоволоконной технологии при всех негативных факторах применения расширяет спектр своего охвата. В немалой степени этому способствовал технологический формат сети GPON, представляющей собой оптимизированную концепцию магистральных линий оптико-волоконной связи. «Ростелеком», как одна из крупнейших телекоммуникационных компаний в России, сделала большой шаг в технологическом освоении данного формата. На сегодняшний день она выполняет прокладку линий без промежуточных усилительных узлов на расстояния от 20 до 60 км с поддержкой скорости до 1,25 Гб/с. И это лишь один из возможных форматов использования оптоволокна в сфере телекоммуникаций на сегодняшний день.

Источники

  • https://FB.ru/article/460024/optiko-volokonnaya-svyaz-osobennosti-plyusyi-i-minusyi
  • https://WiFiGid.ru/besprovodnye-tehnologii/optovolokonnaya-svyaz
  • https://setinoid.ru/types/volokonno-opticheskie-linii-svyazi
  • https://www.elec.ru/articles/kharakteristiki-i-protokoly-peredachi-po-optichesk/
  • https://zen.yandex.ru/media/elektrika/kak-podkliuchit-opticheskii-kabel-teoriia-i-praktika-5a706cd2865165a4b32e653a
  • https://zen.yandex.ru/media/localhost/peredacha-dannyh-s-pomosciu-sveta-ili-chto-takoe-opticheskoe-volokno-5b10a2913dceb710503c2cd0
  • https://www.tadviser.ru/index.php/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F:%D0%9E%D0%BF%D1%82%D0%BE%D0%B2%D0%BE%D0%BB%D0%BE%D0%BA%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B2%D1%8F%D0%B7%D1%8C
  • https://skomplekt.com/solution/vols.htm/
  • https://www.insotel.ru/press/articles/stroim_set_ethernet_lvs/volokonno_opticheskie_linii_svyazi_vols_stroim_set_predpriyatiya/
[свернуть]
Поделиться:
Нет комментариев