Оптоволоконный кабель, ВОЛС. Общие сведения и характеристики. Почему оптоволоконный интернет является самым лучшим вариантом интернета для дома

Волоконно-оптический кабель

Содержание

Что такое оптоволокно?

Оптоволоконный кабель — это специальный провод, сделанный из стекла и пластмассы. Благодаря ему осуществляется передача луча с помощью его отражения. Есть одномодовые и многомодовые кабельные волокна. В первом случае распространение луча происходит в одном экземпляре, а во втором случае — во множественном, когда каждый луч (мод) вводят в кабель под определенным углом. Впервые передача данных с помощью такой технологии была осуществлена в 1950-х годах.

Оптоволоконный кабель

В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Это надежный (защищенный) способ передачи данных, так как электрические сигналы при этом не передаются. Следовательно, оптоволоконный кабель нельзя вскрыть и перехватить данные (скопировать, удалить, изменить), от чего не застрахован любой другой кабель, проводящий электрические сигналы. Кроме того, такие проблемы передачи информации по проводам как электромагнитные помехи, перекрестные помехи, шумы и необходимость заземления, полностью устраняются. Вдобавок, чрезвычайно уменьшается погонное затухание, что позволяет протягивать оптоволоконные связи без регенерации сигналов на значительно большие дистанции, достигающие 120 км.

Оптическое волокно (оптоволокно) — очень тонкий стеклянный цилиндр, называемый жилой (core), покрытый слоем стекла (Рис. 1), называемого оболочкой, с иным коэффициентом преломления в отличии от жилы. В некоторых случаях оптоволокно производят из пластика. Пластик проще в использовании, но минусом является то, что он передает световые импульсы на более меньшие дистанции по сравнению со стеклянным проводником. Каждое стеклянное волокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон с разными коннекторами. Одно из них служит для передачи, а другое — для приема данных. Жесткость волокон увеличена покрытием из пластика, а прочность — волокнами из кевлара.


Рис. 1

Оптоволоконный кабель, он же кабель оптоволоконный отлично подходит для создания сетевых магистралей, и в частности для соединения между зданиями, так как на него не влияет влажность и другие негативные условия окружающей среды. Также он обеспечивает повышенную (по сравнению с медью) секретность передаваемых данных, так как не испускает электромагнитного излучения, и к нему практически невозможно подключиться без разрушения целостности самого кабеля.

Недостатки оптоволокна связаны со стоимостью его прокладки и эксплуатации, которые обычно намного выше, чем для медной среды передачи данных. Эта разница стала привычной, но в наше время она стала менее значимой. Сама оптоволоконная среда только слегка дороже UTP категории 5. Но независимо от указанных преимуществ и недостатков применение оптоволокна приносит с собой другие проблемы, такие как процесс прокладки. Разводка оптоволоконного кабеля в основном ничем не отличается от укладки медного, но присоединение коннекторов требует иного инструмента и технических навыков. Требуется специальный оптоволоконный инструмент, предназначенный для правильной работы с данным видом кабеля. К выбору оптоволоконного инструмента также следует подойти основательно, во избежание порчи кабеля.

Устройство

Самое простое устройство имеет оптоволоконный кабель для внутреннего монтажа, а также кабель обычного исполнения, не имеющего брони. Наиболее сложная конструкция у кабелей для подводного монтажа и для монтажа в грунт.

Технология передачи сигнала через оптоволокно

Само по себе использование оптоволокна в качестве транслятора сигналов – лишь часть раскрытого знания, которые исследуются в научном разделе волоконной оптики. Специалисты этого направления занимаются изучением передачи информации и распространения света, причем в одном контексте, объединенном световодами. Последние используются и в качестве распространителей света, и как передатчики информации. К слову, на светодиодах же основываются современные направления развития лазерных технологий. В данном же случае интереснее другой вопрос – какое явление заложено в основу волоконной оптики? Это явление внутреннего отражения (полного) электромагнитного излучения в границах раздела диэлектриков, имеющих различные показатели преломления. Причем носителем информации выступает вовсе не электромагнитный сигнал, а закодированный световой поток. Для понимания степени превосходства оптоволоконных кабелей перед традиционными металлическими стоит еще раз обратиться к их пропускной способности. Уже упомянутая волоконная нить, толщина которой составляет не более 0,5 мм, способна передавать объем информации, который обычная медная проводка обслужит только при толщине в 50 мм.

Методы изготовления оптоволокна

Существует два основных метода, по которым может изготавливаться оптическое волокно. Это техника экструзии и плавление с использованием преформ. Первая технология позволяет получать материал низкого качества на основе пластиков, поэтому сегодня ее практически не используют. Второй метод считается основным и наиболее эффективным. Преформа – это заготовка, находящаяся в конструкции, предназначенной для вытяжки нитей. По современным стандартам преформы могут иметь высоту до нескольких десятков метров. Внешне это стеклянный стержень диаметром порядка 10 см, из которого выплавляется сердцевина нити. В процессе изготовления стержень вместе со смесью для волокон нагревается до высоких температур, после чего происходит формование нитей. Длина получаемого материала может достигать нескольких километров, хотя диаметр при этом остается неизменным – его контролируют автоматизированные регуляторы. В зависимости от того, где будет применяться волоконная оптика, материал для нее предварительно может обрабатываться покрытиями, обеспечивающими химическую и физическую защиту. Что касается самих смесей для нитей, то в их состав обычно входят такие материалы, как полиимид, акрилат и силикон.

Основные характеристики оптического волокна

Способность оптического волокна передавать информационный сигнал описывается при помощи ряда геометрических и оптических параметров и характеристик, из которых наиболее важными являются затухание и дисперсия.

1. Геометрические параметры.

Помимо соотношения диаметров сердцевины и оболочки, большое значение для процесса передачи сигнала имеют и другие геометрические параметры оптоволокна, например:

  • некруглость (эллиптичность) сердцевины и оболочки, определяемая как разность максимального и минимального диаметров сердцевины (оболочки), деленная на номинальный радиус, выражается в процентах;
  • неконцентричность сердцевины и оболочки – расстояние между центрами сердцевины и оболочки

Геометрические параметры стандартизированы для разных типов оптического волокна. Благодаря совершенствованию технологии производства значения некруглости и неконцентричности удается свести к минимуму, так что влияние неточности геометрии оптоволокна на его оптические свойства оказывается несущественным.

2. Числовая апертура.

Числовая апертура (NA) – это синус максимального угла падения луча света на торец волокна, при котором выполняется условие полного внутреннего отражения (рис. 4). Этот параметр определяет количество мод, распространяющихся в оптическом волокне. Также величина числовой апертуры влияет на точность, с которой должна производиться стыковка оптических волокон друг с другом и с другими компонентами линии.

3. Профиль показателя преломления.

Профиль показателя преломления – это зависимость показателя преломления сердцевины от ее поперечного радиуса. Если показатель преломления остается одинаковым во всех точках поперечного сечения сердцевины, такой профиль называется ступенчатым. Среди других профилей наибольшее распространение получил градиентный профиль, при котором показатель преломления плавно увеличивается от оболочки к оси (рис. 5). Помимо этих двух основных, встречаются и более сложные профили.

4. Затухание (потери).

Затухание – это уменьшение мощности оптического излучения по мере распространения по оптическому волокну (измеряется в дБ/км). Затухание возникает вследствие различных физических процессов, происходящих в материале, из которого изготавливается оптоволокно. Основными механизмами возникновения потерь в оптическом волокне являются поглощение и рассеяние.

а) Поглощение. В результате взаимодействия оптического излучения с частицами (атомами, ионами…) материала сердцевины часть оптической мощности выделяется в виде тепла. Различают собственное поглощение, связанное со свойствами самого материала, и примесное поглощение, возникающее из-за взаимодействия световой волны с различными включениями, содержащимися в материале сердцевины (гидроксильные группы OH, ионы металлов…).

б) Рассеяние света, то есть отклонение от исходной траектории распространения, происходит на различных неоднородностях показателя преломления, геометрические размеры которых меньше или сравнимы с длиной волны излучения. Такие неоднородности являются следствием как наличия дефектов структуры волокна (рассеяние Ми), так и свойствами аморфного (некристаллического) вещества, из которого изготавливается волокно (рэлеевское рассеяние). Рэлеевское рассеяние является фундаментальным свойством материала и определяет нижний предел затухания оптического волокна. Существуют и другие виды рассеяния (Бриллюэна-Мандельштама, Рамана), которые проявляются при уровнях мощности излучения, превышающих те, которые обычно используются в телекоммуникациях.

Величина коэффициента затухания имеют сложную зависимость от длины волны излучения. Пример такой спектральной зависимости приведен на рис. 6. Область длин волн с низким затуханием называется окном прозрачности оптического волокна. Таких окон может быть несколько, и именно на этих длинах волн обычно осуществляется передача информационного сигнала.

Потери мощности в волокне обуславливаются также различными внешними факторами. Так, механические воздействия (изгибы, растяжения, поперечные нагрузки) могут приводить к нарушению условия полного внутреннего отражения на границе сердцевины и оболочки и выходу части излучения из сердцевины. Определенное влияние на величину затухания оказывают условия окружающей среды (температура, влажность, радиационный фон…).

Поскольку приемник оптического излучения имеет некоторый порог чувствительности (минимальную мощность, которую должен иметь сигнал для корректного приема данных), затухание служит ограничивающим фактором для дальности передачи информации по оптическому волокну.

5.Дисперсионные свойства.

Помимо расстояния, на которое передается излучение по оптическому волокну, важным параметром является скорость передачи информации. Распространяясь по волокну, оптические импульсы уширяются во времени. При высокой частоте следования импульсов на определенном расстоянии от источника излучения может возникнуть ситуация, когда импульсы начнут перекрываться во времени (то есть следующий импульс придет на выход оптического волокна раньше, чем закончится предыдущий). Это явление носит название межсимвольной интерференции (англ. ISI – InterSymbol Interference, см. рис. 7). Приемник обработает полученный сигнал с ошибками.

Уширение импульса, или дисперсия, обуславливается зависимостью фазовой скорости распространения света от длины волны излучения, а также другими механизмами

Виды и области применения

Друзья, перед ознакомлением с дальнейшим материалом настоятельно рекомендую обратить внимание вот на этот каталог оптического кабеля. Т.е. смотрите что можно купить на практике в реальном магазине, а ниже пытаетесь найти верную расшифровку. Это и интересно, и поможет лучше понять информацию)

Оптическое волокно бывает двух типов (в зависимости от количества лучей в волокне – мод):

  1. Одномодовое. Диаметр ядра – 7-10 микрон, светоотражение проходит в одной моде. Типы:
  • Стандартное (с несмещенной дисперсией);
  • Со смещенной дисперсией;
  • С ненулевой смещенной дисперсией.
  1. Многомодовое. Диаметр сердцевины – 50-62 микрон (зависит от национальных стандартов), излучение проходит по нескольким модам. Классифицируются на:
  • Ступенчатые;
  • Градиентные.

Этот раздел сложен для простого обывателя, но, если кому-то хочется разобраться подробнее, напишите в комментарии. Кто-то из ребят обязательно пояснит все, что было непонятно.

Основные направления, где применяется оптоволокно – это волоконно-оптическая связь и волоконно-оптический датчик. Другие области:

  • Освещение;
  • Формирование изображения;
  • Создание волоконного лазера.

Как я понимаю, все же основная область применения – это построение магистралей оптоволоконных линий связи. Проще говоря, это линии, с помощью которых передается Интернет во всех крупных городах.

А вот что рассказывает познавательная передача для детей и взрослых «Галилео»:

Типы проводов с оптическими волокнами в линиях электропередач

Волоконно-оптические кабели производятся в виде пучков, содержащих от десятка до нескольких сотен волокон в одном пучке. Кабели с оптоволоконными кабелями могут использоваться в силовых линиях в качестве: фазные проводники (под напряжением) или молниеотводы (заземляющие потенциальные проводники) и самонесущие диэлектрические (дополнительные кабели в линии, содержащей только волоконно-оптические кабели). Существует несколько типов проводников, связанных с оптическими волокнами.
OPGW (Optical Ground Wire – оптический провод заземления) – молниеотводы, обычно используемые в воздушных линиях электропередачи напряжением 110 кВ.

С точки зрения конструкции, различают два типа проводов:

  • провода, состоящие из одной центральной трубки (из алюминиевой или нержавеющей стали), содержащей оптические волокна, и наружный слой из алюминиевых сплавов ,
  • шланги с раструбом из нержавеющей стали, они состоят из нескольких стальных проволок, образующих жилы и наружного слоя из алюминиевых сплавов. Оптические волокна помещаются в специальную трубку из нержавеющей стали и являются сердцевиной кабеля.

Наиболее важными преимуществами этих кабелей являются следующие:

  • возможность применения в существующих линиях (в место обычных из стали и алюминиевых проводов типа AFL), в большинстве случаев без необходимости усиления конструкции колонны,
  • простой монтаж, с использованием существующего кабеля,
  • надежность и долговечность.

ADSS (All Dielectric Self Supporting) – оптоволоконные кабели без металлических элементов. Они сделаны из центрально расположенного сердечника FRP в форме стержня, окруженного несколькими трубками, содержащими оптические волокна.
Между внутренней и внешней оболочкой кабеля находятся очень прочные арамидные волокна, которые придают кабелям ADSS соответствующую механическую прочность.

Кабели ADSS характеризуются небольшим увеличением провисания. При выборе точки крепления кабелей ADSS, необходимо также учитывать распределение напряженности электрического поля между фазовыми проводами, так как в случае дождя или высокой влажности воздуха, наружная оболочка подвергается микроразрядам. Размещение проводов в зоне с слишком большим электрическим полем, приводит к быстрому разрушению их оболочки. Решением этой проблемы является использование полупроводниковых кабелей, которые из-за высокой напряженности электромагнитного поля обычно используются в линиях напряжением не более 110 кВ. При более высоком напряжении используются специальные кабели, изготовленные из материалов, устойчивых к воздействию электрического поля. При проектировании подвески кабелей ADSS на существующих линиях электропередач, необходимо учитывать дополнительное напряжение, воздействующее на несущие конструкции, и создать соответствующие усиления.

MASS (Metallic Aerial Self Supporting) – самонесущие кабели из алюминиевой стальной проволоки в сочетании с оптоволокном. Они очень похожи на кабели OPGW, но не являются молниеотводом или электрической функцией в линии. По этой причине кабели MASS обычно свисают чуть ниже, чем фазовые провода.


Данное решение является альтернативой стандартному способу крепления оптоволоконных кабелей в высоковольтных линиях и обычно используется, когда необходимо увеличить количество волокон в линии, а заменить существующие OPGW, OPPC или ADSS кабели либо невозможно, либо экономически нецелесообразно. Благодаря высокой механической прочности, небольшому весу и диаметру эти тросы немного увеличивают нагрузку на конструкцию столба.

Sky Wrap – диэлектрический оптоволоконный кабель, обмотанный вокруг традиционного молниеотвода или фазовой линии электропередачи. Он используется в ситуациях, когда существующий традиционный оптоволоконный кабель находится в хорошем состоянии и его замена на кабель OPGW экономически нецелесообразна или если существует необходимость увеличения количества волокон в установленном кабеле OPGW. Sky Wrap собирается с помощью специальных роботов с собственным приводом, перемещающихся по кабелю и дистанционно управляемых с земли. Преимуществом использования этих кабелей является: низкая дополнительная нагрузка на линии (значительно меньше, чем, например, у кабелей ADSS), низкая чувствительность к колебаниям (благодаря спиральной обмотке с контролируемым напряжением), возможность установки также на существующие кабели OPGW, простой и быстрый монтаж, низкая стоимость всей системы по сравнению с другими решениями. Кабели Sky Wrap также могут использоваться в линиях напряжением 15 кВ, после чего их монтаж выполняется с помощью робота.

На видео: Монтаж sky Wrap кабеля

ADL (All Dielectric Lashed Cables) – диэлектрические оптоволоконные кабели, прикрепляемые к молниеотводу с помощью кевларовой ленты. Они отличаются от Sky Wrap тем, что закреплены на несущем кабеле и фиксируется снизу. Установка осуществляется с помощью специального самоходного робота.

Многомодовое волокно

Из-за влияния межмодовой дисперсии MM-волокно имеет ограничения по скорости и дальности распространения сигнала по сравнению с SM-волокном. Длину многомодовых линий связи ограничивает также большое по сравнению с одномодовым волокном затухание.

В то же время требования к расходимости излучения источника сигнала, а так же к точности юстировки компонентов оборудования ощутимо снижаются за счёт большого диаметра. Вследствие этого оборудование для многомодового волокна стоит гораздо дешевле, чем для одномодового (хотя само многомодовое волокно несколько дороже).

Как было упомянуто ранее, наибольшее распространение получили многомодовые волокна 50/125 и 62,5/125 мкм. Первые коммерческие MM волокна, производство которых началось в 1970-х годах, имели диаметр сердцевины 50 мкм и ступенчатый профиль коэффициента преломления. На тот момент единственным источником излучения были светодиоды. Увеличение передаваемого трафика привело к появлению волокон с сердцевиной 62,5 мкм. Бо́льший диаметр позволял более эффективно использовать излучение светодиодов, которые отличаются большой расходимостью светового потока. Однако при этом увеличивалось число распространяемых мод, что, как как мы знаем, негативно сказывается на характеристиках передачи. Поэтому, когда вместо светодиодов стали использоваться узконаправленные лазеры, популярность снова обрело волокно 50/125 мкм. В результате совершенствования технологии производства были разработаны волокна, которые стали называть «оптимизированными для работы с лазерами». Дальнейшему росту скорости и дальности передачи информации способствовало появление волокон с градиентным профилем показателя преломления.

В настоящее время существует классификация многомодовых кварцевых волокон, подробно описанная в различных стандартах. Например, стандарт ISO/IEC 11801 определяет 4 категории многомодовых волокон. Они обозначаются латинскими буквами OM (Optical Multimode) и цифрой, обозначающей класс волокна:

  • OM1 – стандартное многомодовое волокно 62,5/125 мкм;
  • OM2 – стандартное многомодовое волокно 50/125 мкм;
  • OM3 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером;
  • OM4 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером, с улучшенными характеристиками.

Основной параметр, зависящий от дисперсии и определяющий способность волокна поддерживать распространение сигнала на определенные расстояния – коэффициент широкополосности. Для каждого класса в стандарте указываются значения затухания и коэффициента широкополосности. Данные представлены в таблице 1, где параметр OFL (overfilled launch) описывает метод определения ширины полосы пропускания, а именно – с помощью светодиодов.

Класс волокна

Затухание, дБ/км

Коэффициент широкополосности (OFL), МГц*км

Примечание

850 нм

1300 нм

850 нм

1300 нм

OM1

3,5

1,5

200

500

Применяется для расширения ранее установленных систем. Использовать в новых системах не рекомендуется.

OM2

500

500

Применяется для поддержки приложений с производительностью до 1 Гбит/с на расстоянии до 550 м.

OM3

1500

500

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 2000 МГц·км. Волокно применяется в системах с производительностью до 10 Гбит/с на расстоянии до 300 м.

OM4

3500

500

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 4700 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 550 м.

Табл. 1. Сравнение характеристик ММ-волокон разных классов.

В июне 2016 года Ассоциация телекоммуникационной промышленности (TIA) опубликовала стандарт, описывающий новый класс ММ волокна – ОМ5 (TIA-492AAAE). Волокна, изготовленные по такому стандарту, позволят использовать технологию SWDM (Short-wavelength division multiplexing – уплотнение по коротким длинам волн) с четырьмя различными длинами волн. Что, в свою очередь, даст возможность повысить скорость передачи информации в 4 раза при сохранении и даже небольшом увеличении максимальной длины линии. В настоящий момент волокна OM5 в нашей стране практически не применяются, поскольку все их достоинства реализуются только в случае использования активного оборудования (трансиверов), работающего с технологией SWDM. О коммерческой целесообразности применения таких волокон говорить пока рано.

Одномодовое волокно

В одномодовом волокне отсутствует межмодовая дисперсия, то есть искажение сигнала во времени из-за разницы в скорости распространения мод. Поэтому одномодовое волокно характеризуется очень большой величиной ширины полосы пропускания (сотни ТГц*км). Стандартное SM-волокно имеет, как упоминалось ранее, ступенчатый профиль показателя преломления.

Величина затухания в SM волокне в несколько раз меньше, чем в MM, что позволяет передавать информацию на очень большие расстояния (500 и более км) на высокой скорости без ретрансляции (повторения) сигнала, при этом характеристики передачи определяются главным образом параметрами активного оборудования.

С другой стороны, одномодовое волокно требует большой точности при вводе излучения и при стыковке оптических волокон друг с другом, что является причиной удорожания используемых волоконно-оптических компонентов (активное оборудование, соединительные изделия) и усложняет процесс монтажа и обслуживания линий.

Первые SM-волокна появились в начале 80-х годов и стали активно использоваться в протяженных линиях связи. В то же время для передачи на короткие расстояния, например, в локальных сетях, продолжалось использование ММ-волокна. Со временем, в связи с уменьшением стоимости как самого волокна, так и компонентов для него, одномодовое волокно стало завоевывать все большую популярность и в непротяженных сетях. Таким образом, сегодня кварцевое SM- волокно является самым распространенным типом оптического волокна.

По мере совершенствования технологий производства создавались и менялись и стандарты, описывающие требования к оптическим волокнам. В отличие от MM-волокон, которые в настоящее время описываются стандартом ISO/IEC 11801, для SM волокон наиболее распространёнными и повсеместно используемыми стали стандарты ITU-T G.652-657.

Перечислим основные свойства волокон, соответствующих этим стандартам.

  1. Одномодовое волокно с несмещенной дисперсией, G.652 (SSMF – Standard Singlemode Fiber)

Наиболее распространенный тип одномодового волокна с точкой нулевой хроматической дисперсии на длине волны 1300 нм. Стандарт выделяет четыре подкласса (A, B, C и D), отличающихся своими характеристиками. Особо стоит отметить волокна G.652.C и G.652.D – они имеют низкое затухание на длине волны 1383 нм, то есть в области «водного пика», а потому могут использоваться в системах CWDM. Такие волокна еще называют «всеволновыми».

  1. Одномодовое волокно с нулевой смещенной дисперсией, G.653 (ZDSF – Zero Dispersion-Shifted Fiber)

Изменяя профиль показателя преломления, можно сдвинуть точку нулевой дисперсии в третье окно прозрачности (1550 нм), что позволяет увеличить дальность передачи сигнала при работе в этом диапазоне. Используются только за рубежом и только в линиях, работающих без использования спектрального уплотнения.

  1. Одномодовое волокно со смещенной длиной волны отсечки, G.654

Волокна с минимизацией потерь на длине волны l=1550 нм являются модификацией волокон SSF с уменьшенными потерями (менее 0,18 дБ/км) в третьем окне прозрачности. Низкое затухание достигается за счет применения кварца сверхвысокой степени очистки для сердцевины, что позволяет снизить затухание, обусловленное поглощением примесями, а также формирования больших значений длины волны отсечки для уменьшения чувствительности к потерям, обусловленным изгибами волокна. Такое оптоволокно может использоваться для передачи цифровой информации на большие расстояния, например, в наземных системах дальней связи и магистральных подводных кабелях с оптическими усилителями. Из-за трудности производства эти волокна очень дороги.

  1. Одномодовое волокно с ненулевой смещенной дисперсией, G.655 (NZDSF – Non-Zero Dispersion Shifted Fiber)

Предназначено для передачи на длинах волн вблизи 1550 нм и оптимизировано для систем DWDM. Абсолютное значение коэффициента хроматической дисперсии в этом волокне больше некоего ненулевого значения в диапазоне длин волн от 1530 нм до 1565 нм. Ненулевая дисперсия препятствует возникновению нелинейных эффектов, которые особенно вредны для DWDM систем.

  1. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи, G.656

Подобно волокну G.655, имеет ненулевое значение коэффициента хроматической дисперсии, но уже в диапазоне длин волн 1460-1625 нм, поэтому хорошо подходит как для систем DWDM, так и для CWDM.

  1. Одномодовое волокно, не чувствительное к потерям на макроизгибе, G.657 (Bend-Insensitive)

Помимо оптических свойств, важную роль играют и механические характеристики оптоволокна, в частности, его чувствительность к изгибам. Особенно это важно при прокладке внутри помещения, где волокно часто нужно изгибать. Стандарт G.657 выделяет несколько подклассов одномодового волокна, отличающихся минимальным радиусом изгиба и соответствующей величиной потерь.

Описанные стандарты оптических волокон не всегда взаимоисключают друг друга. К примеру, распространенное оптоволокно компании Corning марки SMF-28® Ultra соответствует стандартам G.652.D и G.657.A1. В то же время бывают случаи, когда оптические волокна разных типов не совместимы друг с другом.

Примеры кабельной продукции

Несмотря на различные оптические свойства, волокна SM и MM совершенно неотличимы по внешнему виду. Совпадает даже диаметр оболочек, который, как мы помним, равен 125 мкм для всех типов. Производителям волоконно-оптического кабеля нет никакой разницы, какое волокно использовать в той или иной марке кабеля. По желанию заказчика кабель может быть изготовлен с использованием любых типов волокна. Тем не менее, как мы уже знаем, кабель с многомодом предназначается, в основном, для локальных сетей, поэтому в качестве примера мы можем привести кабель из серии «дистрибьюшн», применяемый при прокладке в пределах этажа.

В конструкцию входят оптические волокна в буферном покрытии, слой упрочняющих арамидных нитей и внешняя оболочка, обязательно не распространяющего горение исполнения. На оболочке кабеля обязательно указывается полная маркировка, например, ОБР-В-нг(А)-HF 12 G.651 OM2.

В то же время, кабель на основе одномода может быть совершенно любой конструкции. Тип используемого волокна так же в обязательном порядке указывается в маркировке кабеля на его оболочке. При этом надо помнить, что у каждого производителя правила маркировки свои, причём чаще всего тип ОВ указывается сокращённо. Например, на кабелях ООО «Инкаб» для обозначения ОВ марки Corning SMF-28® в маркировке используют букву «У». Для примера можно взять кабель, предназначенный для прокладки в городской кабельной канализации.

Рис. 5. Внешний вид кабеля ДПЛ.

Такой кабель отличается внешней оболочкой чёрного цвета, бронепокровом из гофрированной ленты и водозащитой. Маркировка выглядит, например, так – ДПЛ-П-24У(3х8) 2.7кН.

Помимо кабелей, в число материалов для строительства ВОЛС входят также оптические шнуры (ОШ). Оптические шнуры характеризуются тем, что имеют небольшую длину и содержат, как правило, всего одно (simplex) или два (duplex) волокна. Такие шнуры, называемые также патчкордами (два коннектора) или пигтейлами (один коннектор) могут быть как SM, так и MM, при этом для идентификации на буферной оболочке указывается тип волокна. Если же буферная оболочка имеет диаметр не 3 мм, а 0,9 мм, и рассмотреть на ней какую-либо надпись было бы затруднительно, обычно прибегают к цветовой маркировке. Цветовые соответствия разных типов ОВ описываются стандартом ANSl/TIA/EIA-598-C, но, к сожалению, в нашей стране он не отражён в нормативных документах. Поэтому иногда можно встретить оптические шнуры нестандартных цветов, что может вызвать определенные сложности в работе с линией.

Тем не менее, согласно стандарту, буферные покрытия имеют цвета, представленные на рис. 6:

Рис. 6. Цветовая кодировка буферного покрытия различных видов ОШ.

Рис. 7. MM-патчкорды категории OM2

Рис. 8. SM-патчкорды

Иногда, некоторые производители ОШ (например, ЗАО «Связьстройдеталь») используют вместо жёлтого цвета буфера белый, если шнур изготавливается из изгибостойкого волокна (соотв. стандарту G.657.A1).

Кабель для внутреннего монтажа

Внутренние кабели делят на абонентские, для прокладки к потребителю, и распределительные для создания сети. Оптику проводят в кабельных каналах, лотках. Некоторые разновидности прокладывают по фасаду здания до распредкоробки, либо до самого абонента.

Устройство оптоволокна для внутренней прокладки состоит из оптического волокна, специального защитного покрытия, силовых элементов, например, троса. К кабелю, прокладываемому внутри зданий, предъявляются требования пожарной безопасности: стойкость к горению, низкое выделение дыма. Материал оболочки кабеля состоит из полиуретана, а не полиэтилена. Кабель должен быть легким, тонким и гибким. Многие исполнения оптоволоконного кабеля облегчены и защищены от влаги.

Внутри помещений кабель обычно прокладывается на небольшие расстояния, поэтому о затухании сигнала и влиянии на передачу информации речи не идет. В таких кабелях количество оптоволокна не более двенадцати. Существуют и гибридные оптоволоконные кабели, имеющие в составе витую пару.

Кабель без брони для кабельных каналов

Оптика без брони применяется для монтажа в кабельные каналы, при условии, что не будет механических воздействий снаружи. Такое исполнение кабеля применяется для тоннелей и коллекторов домов. Его укладывают в трубы из полиэтилена, вручную или специальной лебедкой. Особенностью такого исполнения кабеля является наличие гидрофобного наполнителя, гарантирующего нормальную эксплуатацию в кабельном канале, защищает от влаги.

Небронированный канализационный кабель

Небронированная оптика используется для укладки в канализации, при условии, что на нее не будет внешних механических воздействий. Также подобный кабель прокладывается в тоннелях, коллекторах и зданиях. Но даже в случаях отсутствия внешнего воздействия на кабель в канализации, его могут укладывать в защитные полиэтиленовые трубы, а монтаж производится либо вручную, либо при помощи специальной лебедки. Характерной особенностью данного типа оптоволоконного кабеля можно назвать наличие гидрофобного наполнителя (компаунда), который гарантирует возможность эксплуатации в условиях канализации и дает некоторую защиту от влаги.

Бронированный канализационный кабель

Бронированные оптоволоконные кабели используются при наличии больших внешних нагрузок, в особенности, на растяжение. Бронирование может быть различным, ленточным или проволочным, последнее подразделяется на одно- и двухповивное. Кабели с ленточным бронированием используются в менее агрессивных условиях, например, при прокладке в кабельной канализации, трубах, тоннелях, на мостах. Ленточное бронирование представляет собой стальную гладкую или гофрированную трубку толщиной в 0,15-0,25 мм. Гофрирование, при условии, что это единственный слой защиты кабеля, является предпочтительным, так как оберегает оптоволокно от грызунов и в целом повышает гибкость кабеля. При более суровых условиях эксплуатации, например, при закладке в грунт или на дно рек используются кабели с проволочной броней.

Оптический кабель с тросом

Оптические кабеля с тросом — это разновидность самонесущих кабелей, которые также используются для воздушной прокладки. В таком изделии трос может быть несущим и навивным. Еще существуют модели, в которых оптика встроена в грозозащитный трос.

Усиление оптического кабеля тросом (профилированным сердечником) считается достаточно эффективным методом. Сам трос представляет собой стальную проволоку, заключенную в отдельную оболочку, которая в свою очередь соединяется с оболочкой кабеля. Свободное пространство между ними заполняется гидрофобным заполнителем. Часто такую конструкцию оптического кабеля с тросом называют «восьмеркой» из-за внешнего сходства, хотя лично у меня возникают ассоциации с перекормленной «лапшой». «Восьмерки» применяют для прокладки воздушных линий связи с пролетом не более 50-70 метров. В эксплуатации подобных кабелей есть некоторые ограничения, например, «восьмерку» со стальным тросом нельзя подвешивать на ЛЭП. Надеюсь, объяснять, почему именно, не нужно.

Но кабели с навивным грозозащитным тросом (грозотросом) спокойно монтируются на высоковольтных ЛЭП, крепясь при этом к проводу заземления. Грозотросный кабель используется в местах, где есть риски повреждения оптики дикими животными или охотниками. Также его можно использовать на больших по дистанции пролетах, чем обычную «восьмерку».

Кабель для укладки в грунт

Для монтажа кабеля в грунт применяют оптоволокно с броней из проволоки. Могут использоваться также кабели с ленточной броней, усиленные, но они не нашли широкого применения. Для прокладки оптоволокна в грунт задействуют кабелеукладчик. Если монтаж в грунт осуществляется в холодное время при температуре менее -10 градусов, то кабель заранее нагревают.

Для мокрого грунта применяют кабель с герметичным оптоволокном в металлической трубке, а броня из проволоки пропитывается водоотталкивающим составом. Специалисты делают расчеты по укладке кабеля. Они определяют допустимые растяжения, нагрузки на сдавливание и т. д. Иначе по истечении определенного времени оптические волокна повредятся, и кабель придет в негодность.

Броня оказывает влияние на величину допускаемой нагрузки на растяжение. Оптоволокно с броней из проволоки выдерживает нагрузку до 80 кН, с ленточной броней нагрузка может быть не более 2,7 кН.

Подвесной оптоволоконный кабель без брони

Такие кабели устанавливаются на опоры линий связи и питания. Так производить монтаж проще и удобнее, чем в грунт. При этом есть важное ограничение – во время монтажа температура не должна опускаться ниже -15 градусов. Сечение кабеля имеет круглую форму. Благодаря этому уменьшаются нагрузки от ветра на кабель. Расстояние между опорами должно быть не больше 100 метров. В конструкции есть силовой элемент в виде стеклопластика.

Благодаря силовому элементу кабель может выдержать большие нагрузки, направленные вдоль него. Силовые элементы в виде арамидных нитей применяют при расстояниях между столбами до 1000 метров. Достоинством арамидных нитей, кроме малой массы и прочности, являются диэлектрические свойства арамида. При ударе молнии в кабель, никаких повреждений не будет.

Подводный оптический кабель

Данный тип оптических кабелей стоит в сторонке от всех остальных, так как прокладывается в принципиально иных условиях. Почти все типы подводных кабелей, так или иначе, бронированы, а степень бронирования уже зависит от рельефа дна и глубины залегания.

Различают следующие основные типы подводных кабелей (по типу бронирования):

  • Не бронирован;
  • Одинарное (одноповивное) бронирование;
  • Усиленное (одноповивное) бронирование;
  • Усиленное скальное (двухповивное) бронирование;

Подробно конструкцию подводного кабеля я рассматривал больше года назад, поэтому тут приведу только краткую информацию с рисунком:

  1. Полиэтиленовая изоляция.
  2. Майларовое покрытие.
  3. Двухповивное бронирование стальной проволокой.
  4. Алюминиевая гидроизоляционная трубка.
  5. Поликарбонат.
  6. Центральная медная или алюминиевая трубка.
  7. Внутримодульный гидрофобный заполнитель.
  8. Оптические волокна.

Как не парадоксально, прямой корреляции бронирования кабеля с глубиной залегания нет, так как армирование защищает оптику не от высоких давлений на глубине, а от деятельности морских обитателей, а также сетей, тралов и якорей рыболовецких судов. Корреляция эта, скорее, обратная — чем ближе к поверхности, тем больше тревог, что явно видно по таблице ниже:

Сердечники подвесных кабелей по их типу делят на:

  • Кабель с сердечником в виде профиля, оптоволокно устойчиво к сдавливанию и растяжению.
  • Кабель с модулями скрученного вида, оптические волокна проложены свободно, имеется устойчивость к растяжению.
  • С оптическим модулем, сердечник кроме оптоволокна ничего в составе не имеет. Недостаток такого исполнения – неудобно идентифицировать волокна. Преимущество – малый диаметр, низкая стоимость.

Оптоволоконный кабель с тросом

Тросовое оптоволокно является самонесущим. Такие кабели применяются для прокладки по воздуху. Трос бывает несущим или навивным. Есть модели кабеля, в котором оптоволокно находится внутри молниезащитного троса. Кабель, усиленный профильным сердечником, обладает достаточной эффективностью. Трос состоит из стальной проволоки в оболочке. Эта оболочка соединена с оплеткой кабеля. Свободный объем заполнен гидрофобным веществом. Такие кабели прокладывают с расстоянием между столбами не более 70 метров. Ограничением кабеля является невозможность прокладки на линию электропитания.

Кабели с тросом для грозовой защиты устанавливаются на высоковольтных линиях с фиксацией на заземление. Тросовый кабель используется при рисках его повреждения животными, либо на большие дистанции.

Оптоволоконный кабель для укладки под водой

Такой тип оптоволокна обособлен от остальных, потому что его укладка проходит в особых условиях. Все подводные кабели имеют броню, конструкция которой зависит от глубины прокладки и рельефа дна водоема.

Технология подключения

Технология подключения этого вида кабелей ничем по сути не отличается от проведения витой пары или телефонной линии. Все работы выполняются в несколько этапов:

  1. Этап монтажа сети из волоконно-оптического провода;
  2. Этап получения специального модема и его подключение (настройка);
  3. Этап создания подключения нового модема к сети по новой технологии.

Монтажные работы

Такого вида работы выполняются специальными монтажными бригадами, которые устанавливают оборудование провайдера в доме, если его нет, и проводят кабель напрямую от щитка к каждой квартире, желающей получить доступ в оптоволокно интернет именно от этого оператора и заключить с ним договор. Если основной кабель только провелся к дому, то монтаж на всех этажах может занять не один день. Если же он уже давно установлен и просто появился новый желающий клиент, то процесс займет пару минут: от просверливания нескольких стен перфоратором до прокладки кабеля в квартиру по углам этих стен.

Монтаж оборудования в подъезде

Перед тем, как протягивать сеть в отдельные квартиры, нужно установить все необходимое оборудование в подъезде. Работать в этом направлении могут несколько бригад. Электромонтажники пробивают отверстия в перекрытиях, и крепят пластмассовые пеналы, укладывая в них оптокабеля. После всех работ каждый кабель будет висеть около входа в квартиру в смотанном виде.

Далее происходит более громкий вид работ: создание отверстий в бетонных плитах для специальных пластмассовых трубок. После прокладки труб устанавливается оборудование оптических распределителей и коробок.

Монтаж оборудования в квартире

Параллельно с работами вне квартир оператор и его сотрудники должны помочь людям с выбором мест под специальные розетки и провести инструктаж по обращению с хрупким проводом. Провайдер должен заранее сказать, сколько метров кабеля предоставляется бесплатно, а сколько — платно. Обычно отверстие для квартиры пробивают либо близко к потолку, либо около плинтуса. Через эту дырочку с помощью обычной проволоки и протягивается провод интернета. Далее на это место крепится розетка, в которую укладывается кабель.

Важно! Обязательным требованием при установке розетки или модема является наличие рядом электрической розетки, которая будет питать роутер через специальный адаптер.

Получение модема и подготовка к переключениям на оптоволокно

Получение модема осуществляется либо сразу, либо через несколько дней по извещению провайдера. Также сразу или потом может быть составлен или переоформлен договор на предоставление услуг интернета по оптоволокну.

Организационные вопросы

Есть в этом деле и вопросы организационного характера. Если оператор не выдает модем сразу, то за ним нужно будет приехать в сервисный центр, где и будет подписан новый договор и выдача коробки с устройством на руки.

Выполнять подключение модема и его настройку должна бригада специалистов, которые прибудут по заранее оговоренному графику. По окончанию процесса установки клиент расписывается о предоставленных услугах и работоспособности оборудования оптико-волоконного интернета.

Если до этого подключение осуществлялось через этого провайдера, то старое предоставленное оборудование нужно снять и вернуть. Сделает это специалист сервисного центра, который также подключит домашнее оборудование через оптоволоконный интернет.

Технические мероприятия

По прибытию монтажников происходит установка модема: пробиваются несколько отверстий перфоратором и с помощью дюбелей корпус устройства закрепляется саморезами на стене. В него подключается оптокабель. От роутера по полу прокладывают несколько кабелей витой пары для подключения телевизора, персонального компьютера и телефона. Витая пара на концах закрепляется с помощью коннекторов типа RJ-45.

Создание и настройки сети интернет и схема ввода

По сути, после всех вышеперечисленных действий сеть уже собрана. В некоторых случаях еще остается перекоммутировать роутер на управление телевидением, ПК и прочими устройствами, подключить его питание и соединить прибор с домашними сетевыми гаджетами. Схемы оптоволокна очень напоминают медные кабеля, но имеют отличие: домашний телефон в первом случае подключается после роутера и полностью теряет свою автономность.

Измерительное оборудование для оптоволокна

Самым распространенным оборудованием, которое используется в комплектах с оптическим волокном, являются датчики и брэгговские решетки. Оптоволоконные датчики – это устройства, предназначенные для фиксации некоторых значений, характеризующих состояние материала в данный момент. Например, разные датчики могут определять механическое напряжение, температуру, вибрации, давление и другие величины. Брэгговская решетка по своей функции более приближена именно к оптическим характеристикам. Она фиксирует в сердцевине оптоволокна апериодическое возмущение преломления. Данное измерение позволяет определять, насколько волоконная оптика эффективна при трансляции сигнала в конкретных условиях. Также специалисты применяют оптический рефлектометр, регистрирующий показатели рассеивания и сопротивления.

Оптоволоконные усилители и лазеры

Это наиболее прогрессивная продукция, которую разрабатывают на базе технологии волоконной оптики. В отличие от лазеров других типов, использование оптических нитей позволяет создавать компактные и в то же время эффективные аппараты. В частности, технология волоконной оптики позволила заменить классические лазерные приборы благодаря следующим преимуществам:

  • Эффективность теплового отвода.
  • Повышенные показатели выходного излучения.
  • Эффективная накачка.
  • Высокая надежность и стабильность работы лазера.
  • Небольшая масса оборудования.

В свою очередь, усилители в зависимости от типа могут применяться и в домашних сетевых линиях, повышая рабочие показатели основной волоконной линии. Впрочем, сферы эксплуатации оптоволокна стоит рассмотреть подробнее.

Достоинства и недостатки

Напоследок давайте разберемся в плюсах и минусах оптоволоконного кабеля. Начнем с преимуществ:

  • Малые потери при большой длине ретрансляционного участка;
  • Возможность передачи информации по тысячам каналов;
  • Малые размеры и масса;
  • Высокая защищенность от помех и внешних воздействий;
  • Безопасность.

А теперь о недостатках:

  • Подверженность радиации, за счет чего возрастает затухание сигнала;
  • Подверженность стекла водородной коррозии, что приводит к повреждениям материала и ухудшению свойств.

Область применения ВОЛС

Как уже было сказано выше, волоконно-оптические кабели (ВОК) используются для передачи сигналов вокруг (между) зданий и внутри объектов. При построении вешних коммуникационных магистралей предпочтение отдаётся оптическим кабелям, а внутри зданий (внутренние подсистемы) наравне с ними используется традиционная витая пара. Таким образом, различают ВОК для внешней (outdoor cables) и внутренней (indoor cables) прокладки.

К отдельному виду относятся соединительные кабели: внутри помещений они используются в качестве соединительных шнуров и коммуникаций горизонтальной разводки – для оснащения отдельных рабочих мест, а снаружи – для объединения зданий.

Монтаж волоконно-оптического кабеля осуществляется с помощью специальных инструментов и приборов.

Применение оптоволокна в медицине

Такие волокна могут использоваться в медицинском оборудовании и инструментах. Стандартная технология предполагает возможность введения специального аппарата на преломляемых световых волокнах, которые уже в самом органе тела могут передавать сигнал на внешнюю телекамеру. Применяется волоконная оптика в медицине и как осветительный материал. Аппараты, снабженные волоконными модулями, позволяют безболезненно подсвечивать полости желудка, носоглотки и т.д.

Применение оптоволокна в компьютерном оборудовании

Пожалуй, это наиболее распространенная ниша, в которой нашло свое место оптоволокно. Без него сегодня уже не обходятся линии связи между отдельными устройствами, передающие информацию. Разумеется, это касается тех областей, в которых невозможно или нецелесообразно применение беспроводных соединений, которые также активно вытесняют кабели как таковые. Например, крупнейшие телекоммуникационные компании прокладывают межрегиональные магистральные сети, в которых задействуется волоконная оптика. Использование таких каналов для связи периферийного оборудования и обычных потребителей телекоммуникационных услуг позволяет оптимизировать финансовые расходы на обслуживание сетевой инфраструктуры, а также повышает эффективность самой передачи данных.

Заключение

Надеемся, мы довольно подробно смогли рассказать о понятиях одномодового и многомодового кабелей, об их свойствах и отличиях. Надеемся также, что материалы этой статьи помогут вам лучше представлять, на что обращать внимание при работе с оптико-волоконными кабелями. Производство кабельной продукции постоянно совершенствуется, появляются новые разработки и стандарты, и умение ориентироваться в них — залог успешного проектирования и строительства линий связи.

Источники

  • https://Vpautinu.com/internet/optovolokno
  • https://emilink.ru/stati/optovolokonnyy_kabel_vols_obschie_svedeniya_i_harakteristiki/
  • https://electrosam.ru/glavnaja/slabotochnye-seti/provoda/optovolokonnyi-kabel/
  • https://FB.ru/article/314875/volokonnaya-optika-i-ee-primenenie
  • http://infiber.ru/biblioteka/stati/optical_fiber.html
  • https://WiFiGid.ru/besprovodnye-tehnologii/optovolokno-eto
  • https://bezopasnik.info/%D0%B2%D0%BE%D0%BB%D0%BE%D0%BA%D0%BE%D0%BD%D0%BD%D0%BE-%D0%BE%D0%BF%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9-%D0%BA%D0%B0%D0%B1%D0%B5%D0%BB%D1%8C-%D0%BA%D0%B0%D0%BA%D0%B8%D0%B5-%D1%84%D1%83/
  • https://vols.expert/useful-information/odnomodovye-i-mnogomodovye-kabeli/
  • https://www.vokrugkabelya.ru/2017/02/kakie-vidy-optovolokonnykh-kabelei-sushchestvuiut-i-chem-oni-otlichaiutsia.html
  • https://skomplekt.com/solution/vols.htm/
[свернуть]
Поделиться:
Нет комментариев