Трансформатор. Назначение, принципы работы и правила подключения

Принцип работы трансформатора: режимы, схема, назначение, из чего состоит

Содержание

Что такое трансформатор?

Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.

Немного исторических фактов

В основу действия трансформатора легло явление магнитной индукции, открытое М. Фарадеем в 1831 г. Физик, работая с постоянным электрическим током, заметил отклонение стрелки гальванометра, подключенного к одной из двух катушек, намотанных на сердечник. Причем гальванометр реагировал только в моменты коммутации первой катушки.

Поскольку опыты проводились от источника постоянного тока, Фарадей не смог объяснить открытое явление.

Прообраз трансформатора появился лишь в 1848 году. Его изобрел немецкий механик Г. Румкорф, называя устройство индукционной катушкой особой конструкции. Однако Румкорф не заметил трансформации выходных напряжений.Датой рождения первого трансформатора считается день выдачи патента П. Н. Яблочкову на изобретение устройства с разомкнутым сердечником. Это случилось 30.11.1876 года.

Типы аппаратов с замкнутыми сердечниками появились в 1884 году. Их создали англичане Джон и Эдуард Гопкнинсоны.

По большому счету, технический интерес у электромехаников к переменному току возник только благодаря изобретению трансформатора. Идеи российского электротехника М. О. Доливо-Добровольского и всемирно известного Николы Тесла победили в спорах о преимуществах переменных напряжений именно благодаря возможности трансформации тока.

С победой идей этих великих электротехников потребности в трансформаторах резко выросла, что привело к их усовершенствованию и созданию новых типов приборов.

Для чего нужен трансформатор напряжения?

Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.

Используются в:

  • электроустановках;
  • блоках питания;
  • агрегатах передачи электроэнергии;
  • устройствах обработки сигналов;
  • источниках питания приборов.

Силовой трансформатор с большим напряжением применяется для:

  • подачи энергии в электросети на электростанциях;
  • повышения напряжения генератора, линии электропередач;
  • снижения напряжения, доходящего до потребительского уровня.

принцип действия силового трансформатора

Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.

Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.

Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.

Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока. Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.

Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.

Читайте также:  Как вернуть эластичность загрубевшей резине (изделию из резины), это возможно?трансформатор напряжения

Сварочный

Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

Работа трансформатора без нагрузки

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

Работа трансформатора под нагрузкой

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Формула магнитного потока

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Схематичное изображение разделительного трансформатора

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Схематичное изображение повышающего трансформатора

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Схематичное изображение понижающего трансформатора

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

Режимы работы

Силовой трансформатор может работать в трех режимах:

  • в состоянии холостого хода;
  • в режиме нагрузки;
  • в короткозамкнутом режиме.

Поскольку в цепи разомкнутой вторичной обмотки отсутствует ток, то в таком состоянии по первичной обмотке циркулирует ток холостого хода. Параметры этого тока используют при расчетах КПД, определяют коэффициент трансформации, находят потери в сердечнике.

Основным рабочим режимом трансформатора является состояние, когда к его второй обмотке подключена номинальная нагрузка. Первичный ток можно выразить через результирующую тока холостого хода и расчетного тока сопротивления нагрузки.

В режиме короткого замыкания вторичной обмотки, вся мощность концентрируется в цепях обмоток. В таком состоянии можно определить потери, расходуемые на нагревание проводов в обмотках.

Холостой ход (ХХ)

Такой порядок работы реализуется от размыкания вторичной сети, после чего в ней прекращается течение электротока. В первичной обмотке течет ток холостого хода, составной его элемент — ток намагничивающий.

Когда вторичный ток равен нулю, электродвижущая сила индукции в первичной обмотке целиком возмещает напряжение питающего источника, а потому при пропаже нагрузочных токов, идущий сквозь первичную обмотку ток по своему значению соответствует току намагничивающему.

Функциональное назначение работы трансформаторов вхолостую — определение их важнейших параметров:

  • КПД;
  • показателя трансформирования;
  • потерь в магнитопроводе.

Режим нагрузки

Режим характеризуется функционированием устройства при подаче напряжения на вводы первичной цепи и подключении нагрузки во вторичной. Нагружающий ток идет по «вторичке», а в первичной — суммарный ток нагрузки и ток холостой работы. Этот режим функционирования считается для прибора преобладающим.

На вопрос, как работает трансформатор в основном режиме, отвечает основной закон ЭДС индукции. Принцип таков: подача нагрузки к вторичной обмотке вызывает образование во вторичной цепи магнитного потока, образующего в сердечнике нагружающий электроток. Направлен он в сторону, противоположную его течению, создающегося первичной обмоткой. В первичной цепи паритет электродвижущих сил поставщика электроэнергии и индукции не соблюдается, в первичной обмотке осуществляется повышение электротока до того времени, пока магнитный поток не вернется к своему исходному значению.

Короткое замыкание (КЗ)

Переход прибора в этот режим осуществляется при кратковременном замыкании вторичной цепи. Короткое замыкание — особый тип нагрузки, прилагаемая нагрузка — сопротивление вторичной обмотки — единственная.

Принцип работы трансформатора в режиме КЗ таков: к первичной обмотке приходит незначительное переменное напряжение, выводы вторичной соединяются накоротко. Напряжение на входе устанавливается с таким расчетом, чтобы величина замыкающего тока соответствовала величине номинального электротока устройства. Величина напряжения определяет энергопотери, приходящиеся на разогрев обмоток, а также на активное сопротивление.

Такой режим характерен для приборов измерительного типа.

Исходя из многообразия устройств и видов назначения трансформаторов, можно с уверенностью сказать, что на сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения, как гражданских сетей, так и сетей предприятий промышленности.

Устройство трансформатора.

Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Магнитопроводы из электротехнической стали

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Магнитопроводы из сплавов с высокой магнитной проницаемостью

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Магнитопроводы из магнитомягких прессованных ферритов

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Магнитопровод из плоских шихтовых пластин

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

Трансформатор с ленточным магнитопроводом

Тороидальный трансформатор из ленточного магнитопровода

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Схематичное изображение трансформатора стержневого типа

Трансформатор стержневого типа

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Схематичное изображение трансформатора броневого типа

Трансформатор броневого типа

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Схематичное изображение тороидального трансформатора

Тороидальный трансформатор

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

Новые формы магнитопроводов

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

ПЭТВ-2

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

трансформатор напряжения

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

шильдик трансформатора

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Технические характеристики

Важной характеристикой являются коэффициенты трансформации. Они показывают зависимость выходного напряжения от соотношения витков в обмотках. Коэффициент трансформации является базовым параметром при расчете.

Другая важная характеристика трансформатора – его КПД. В некоторых аппаратах этот показатель составляет 0,9 – 0,98, что характеризует незначительные потери магнитных полей рассеяния. Мощность P зависит от площади S сечения магнитопровода. По значению S, при расчетах параметров трансформатора, определяют количество витков в катушках: W = 50 / S.

На практике мощность выбирают исходя из предполагаемой нагрузки, с учетом потерь в сердечнике. Мощность вторичной обмотки Pн= Uн× Iн, а мощность первичной катушки Pс= Uс× Iс. В идеале Pн = Pс (если пренебречь потерями в сердечнике). Тогда k = / = / , то есть, токи в каждой из обмоток имеют обратно пропорциональную зависимость от их напряжений, следовательно, и от количества витков.

Уравнения идеального трансформатора

В таком трансформаторе силовые линии проходят через все ветки первичной, вторичной обмотки. Значит, отсутствуют вихревые потоки и потери энергии. Магнитное поле изменяется, но порождает идентичную ЭДС во всех витках, поэтому становится прямо пропорциональным их общему числу.

Энергия при поступлении из первичной цепи трансформируется в магнитное поле, далее поступает во вторичной цепи.

Формула уравнения идеального трансформатора – P1 = I1 • U1 = P2 = I2 • U2:

  • R1 – коэффициент поступающей мощности из первой цепи на трансформатор;
  • R2 – коэффициент преобразованной мощности с поступлением во вторичную цепь.

Если повысить напряжение на концах вторичной обмотки, то снизится уровень тока первичной цепи. Согласно уравнению – U2/U1 = N2/N1 = I1/I2 преобразование сопротивления одной цепи к сопротивлению другой возможно только при умножении величины на квадрат отношения.

От чего зависит мощность трансформатора

При расчете учитываются следующие параметры:

  • Размеры магнитопровода (сердечника);
  • Количество витков;
  • Сечение провода;
  • Количество обмоток;
  • Частота работы.

И все эти значения меняются в зависимости от расчетной мощности и требуемых параметров.

Эффективность работы

Несмотря на высокий КПД, прибор не идеален. В железе сердечника присутствует процесс, называемый гистерезисом. В переменном магнитном потоке молекулы поворачиваются, и для их обращения необходимо напряжение поля достаточной силы. Изменение положения молекул вызывает трение, которое вырабатывает тепло. Часть энергии уходит на нагрев сердечника. Эти потери можно уменьшить, изготовив пластины из специальных сплавов.

Трансформаторы с небольшой мощностью называются сухими, так как нагрев незначителен и тепло отводится с помощью излучения.

Мощные преобразователи напряжения нагреваются так, что приходится помещать их в ёмкости со специальным маслом, которое передает тепло на радиаторы. В свою очередь, радиаторы могут охлаждаться воздухом принудительно с помощью вентилятора.

Неисправности трансформаторов

К основным неисправностям трансформаторов можно отнести:

  • Коррозия и наличие ржавчины на сердечнике;
  • Перегрев и нарушение изоляции;
  • Межвитковое короткое замыкание;
  • Деформация корпуса, обмоток и сердечника
  • Попадание воды в обмотку.

Как проверить на целостность

Трансформатор можно проверить обычным мультиметром. Установите прибор в режим измерения сопротивления и проверьте обмотки.
Проверка трансформатора мультиметром
Они не должны быть в обрыве, никогда. Если нигде обрывов нет, то можно найти первичную и вторичную обмотки при помощи измерения сопротивления. У первичной обмотки понижающего трансформатора сопротивление будет выше, чем у вторичной. Это все из-за количества витков. Чем больше витков и чем меньше диаметр провода — тем больше сопротивление обмотки.

Так же вы можете найти паспорт на свой трансформатор. В нем указываются сопротивления обмоток, и их параметры, которые нужно будет проверить мультиметром.

Безопасная проверка работы трансформатора

Если вы решили намотать свой трансформатор или проверить старый, то обязательно подключайте лампочку в разрыв цепи (последовательно!). Если что-то не так произойдет то, лампочка загорится и заберет ток на себя и сможет спасти неисправный трансформатор.

Монтаж, подключение, опасные факторы

При пробое изоляции обмоток возникает возможность поражения током, но риск предотвращается заземлением вывода (обозначается на корпусе) вторички.

На выводы вторичной катушки И1 и И2 токи полярные, они обязательно постоянно подсоединены на нагрузку. Идущая по первичной цепи энергия со значительным потенциалом (S=UI). В другой происходит трансформация, и при обрыве в ней там падает напряжение. Потенциал разомкнутых концов при протекании энергии большой, что представляет значительную опасность.

По описанным выше причинам все вторичные цепи ТТ собирают особо тщательно и надежно, на них и кернах, выведенных из функционирования, всегда ставят шунтирующие закоротки.

Как подключается ТТ

Есть несколько схем для изделий защитного типа. Рассмотрим подключение ТТ на трехфазное напряжение.

Полная звезда:

  • самая распространенная, защита одно- и многофазных систем от КЗ;
  • три ТТ соединяются в звезду.

подключение ТТ на трехфазное напряжение

Если ток ниже настроек на реле КА1–КА3, то это нормальная ситуация, защита не активируется. Ток на К0 — это сумма всех 3 фаз. При возрастании величин в одной из них растет ток и в ТТ. Произойдет сработка реле при КЗ и при превышении нагрузок.

Неполная звезда:

  • защита от межфазных замыканий для создания цепей с нейтралью с заземлением;
  • для маломощных приемников с другими вариантами защиты.

Неполная звезда

Схема «треугольник и звезда» — для дифференциальной защиты.

треугольник и звезда

Схема без обесточивания при КЗ на землю используется, но редко по этой же причине. Для защиты от замыканий между фазами и всплесков в одной из них.

Схема без обесточивания

ТТИ подсоединяются простым последовательным подключением первичных витков изделия.

ТТИ

Монтаж

Монтаж трансформаторов тока:

  1. Ревизия устройства, проверка изоляции (должно быть выше 1 кОм на 1 В);
  2. Отключают ЭУ;
  3. Убедится в обесточивании, зафиксировать заземления.
  4. Разметка, установка креплений. Запрещено размещать трансформатор вплотную к ЭУ (минимальный зазор — 10 см).
  5. Выставляются таблички, ограждения.
  6. Первичные витки подсоединяются последовательно, но с нагрузкой на вторичных. Если нет возможности подключить измеритель, то ее контакты замыкают, чтобы не было высоких мощностей на ней, которые приведут его повреждению.

установленные тт

ТТ не допускает холостого функционирования, его режим близок к КЗ: вторичные витки при подключении прибора к измеряемому току обязательно замыкаются. Иначе происходит перегревание, повреждающее изоляцию. Перед отсоединением измерителей сначала закорачивают катушки. У некоторых моделей для этого есть узлы клеммы, перемычки.

Расчет

Расчет трансформатора тока можно провести по онлайн-калькуляторам, подобрать по номиналу (например, для 10 кВ). Но это слишком упрощенные инструменты. Исчисления и параметры для выбора — чрезвычайно обширная тема, поэтому опишем основы.

Расчет трансформатора тока

Точность чрезвычайно важная, поэтому потребуются тщательные исчисления специалистами. Необходимо знать множество специфических нюансов, например:

  • при разных схемах подсоединения, видах КЗ, есть разные формулы определения сопротивления;
  • проверяют первичный ток на термо- и электродинамическую стойкость;
  • есть свои нюансы для ТТ, для релейной защиты и для учетных целей, измерений.

пример Расчета трансформатора тока

Правила, как выбрать трансформатор тока в общих чертах:

  • номинальное рабочее напряжение ТТ должно превышать или сравниваться с номиналом ЭУ (стандартные значения 0.66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750 кВ). Если обслуживаемое оборудование имеет 10 кВ, то изделие должно быть рассчитано на этот показатель;
  • первичный ток ТТ — больше номинального тока у ЭУ, но учитывая перегрузочную способность;
  • оценивают ТТ по номинальной мощности вторичной нагрузки, которая должны превышать расчетное ее значение. (Sном>=Sнагр);
  • оценивают размеры и расположение для установки, номинальные нагрузки (есть таблица), наработка до отказа, срок службы, класс точности.

схемы соединения

расшифровка маркировки

Проверка после расчета

Правила:

  • после расчета ТТ проверяют по загрузке при макс. и мин. значениях, протекающих через него нагрузок;
  • по п. 1.5. 17 ПУЭ при макс. подключенной нагрузке ток во вторичной катушке — не менее 40 % номинала счетчика, при мин. — не менее 5 %;
  • макс. загрузка должна быть от 40 %, а мин. — от 5 %, и в любом случае она не должна превышать 100 %, иначе возникнет перегрузка трансформатора;
  • если рассчитанные величины макс./мин. загрузок меньше 40 % и 5 % соответственно, то надо подбирать изделие с меньшим номиналом, а если этого нельзя сделать по параметрам макс. нагрузки, надо предусмотреть монтаж двух счетчиков — для макс. и мин. нагрузки.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

однофазный трансформатор

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

однофазный трансформатор обозначение на схеме

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

вторичные обмотки трансформатора

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

трехфазный трансформатор

На схемах трехфазные трансформаторы обозначаются вот так:

виды соединений обмоток трехфазного трансформатора

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

трансформатор напряжения

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

работа трансформатора на холостом ходу

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

работа трансформатора на нагрузку

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

потребление тока лампочкой накаливания

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Повышающий трансформатор

Это трансформатор, который  повышает напряжение. Допустим,  на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Классификации

Трансформаторы классифицируются по ряду параметров, таким как:

  • Назначение. Применяются: для изменения напряжения, измерения тока, защиты электрических цепей, как лабораторные и промежуточные устройства.
  • Способ установки. В зависимости от размещения и мобильности трансформатор может быть: стационарным, переносным, внутренним, внешним, опорным, шинным.
  • Число ступеней. Устройства подразделяются на одноступенчатые и каскадные.
  • Номинальное напряжение. Бывают низко- и высоковольтными.
  • Изоляция обмоток. Наиболее часто используется бумажно-масляная, сухая, компаундная.

Помимо этого, преобразовательные устройства разнятся типами, каждому из которых присуща своя система классификации.

Силовой

Наибольшее распространение получил силовой трансформатор . Приборы с непосредственным преобразованием переменного напряжения, рассчитанные на большую мощность, востребованы различными областями электроэнергетики. Они применяются на линиях электропередач с напряжениями 35–1150 кВ, в городских электросетях, работающих с напряжением 6 и 10 кВ, в обеспечении конечных потребителей напряжением 220/380В. С помощью устройств осуществляется питание всевозможных электроустановок и приборов в диапазоне от долей до сотен тысяч вольт.

силовой
Силовой трансформатор

Измерительные

Трансформаторы тока (ТА) понижают ток до необходимых показателей. Схема их работы отличается последовательным включением первичной обмотки и нагрузки. В то же время вторичная обмотка, находящаяся в состоянии, близком к короткому замыканию, используется для подключения измерительных приборов, исполнительных и индикаторных устройств. С помощью ТА осуществляется гальваническая развязка, что позволяет при измерениях отказаться от шунтов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)
Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

С помощью трансформаторов напряжения (ТН) , тоже самое что и ТА только по напряжению. Помимо преобразования входных параметров, электроаппаратура и её отдельные элементы получают защиту от высокого вольтажа.

трансформатор напряжения
Высоковольтный ТН(слева) и низковольтный ТН(справа)

Импульсные трансформаторы

У импульсных трансформаторов другой тип действия. Они преобразуют напряжение до высоких частот с помощью схемы управления. Конечно из-за этого усложняется схема работы, но это позволяет накапливать большое количество энергии в катушках. Большое преимущество перед классическим трансформаторов — это компактность. Если классический трансформатор на 100 Вт будет большим, то импульсный в десятки раз меньше.
Импульсный трансформатор в блоке питания
Из недостатков импульсных блоков питания — это наличие импульсных помех. Но и эти помехи удается сглаживать. Поэтому, все блоки питания в компьютерах, ноутбуках и зарядных устройствах чаще всего сделаны на импульсных трансформаторах.

Еще импульсные трансформаторы питают лампы подсветки в мониторах, которые подсвечивают матрицу. Это касается TFT мониторов.
Зачем нужны трансформаторы

Отличия импульсных трансформаторов от классических

Тезисно можно выделить несколько различий:

  • Частота работы;
  • Состав сердечника;
  • Размеры;
  • Схема работы;
  • Стоимость.

А еще, как правило, у импульсных трансформаторов больше обмоток, чем у классических.

Автотрансформатор

В автотрансформаторах обмотки составляют одну цепь и взаимодействуют посредством электромагнитной и электрической связи. В отличие от других типов преобразователей, устройства могут содержать всего 3 вывода, позволяющих оперировать с различными напряжениями. Приборы выделяются высоким коэффициентом полезного действия, что особо сказывается при незначительном перепаде входного и выходного напряжения.

Однофазный(слева) и трёхфазный(справа)
Однофазный(слева) и трёхфазный(справа)

Не имея гальванической развязки, представители данного типа повышают риск высоковольтного удара по нагрузке. Обязательным условием работы устройств являются надёжное заземление и низкий коэффициент трансформации. Недостаток компенсируется меньшим расходом материалов при изготовлении, компактностью и весом, стоимостью.

Напряжения

Типичное применение – изоляция логических цепей защиты измерительных приборов от высокого напряжения. Трансформатор напряжения – это понижающий прибор, преобразующий высокое напряжение в более низкое.

Тока

Можно первичную обмотку подключить последовательно в электрическую цепь с другими устройствами и получить гальваническую развязку. Такие приборы получили названия трансформаторов тока. Первичную цепь таких устройств контролируют путём изменения однофазной нагрузки, а вторичную катушку используют в цепях измерительных приборов или сигнализации. Второе название приборов – измерительные трансформаторы.

Особенностью работы измерительных трансформаторов является особый режим выходной обмотки. Она функционирует в критическом режиме короткого замыкания. При разрыве вторичной цепи возникает резкое повышение напряжения в ней, что может вызвать пробои или повреждение изоляции.

Трансформатор тока
Трансформатор тока

Воздушные и масляные

Силовые трансформаторы бывают сухими (с воздушным охлаждением) (см. рис. 7) и масляными (см. рис. 8).

Модели сухих силовых трансформаторов чаще всего используют для преобразований сетевых напряжений, в том числе и в схемах трехфазных сетей.

Сухой трехфазный трансформатор
Сухой трехфазный трансформатор

При подключении нагрузки происходит нагревание обмоток, что грозит разрушением электрической изоляции.  Поэтому в сетях с напряжениями свыше 6 кВ работают приборы с масляным охлаждением. Специальное трансформаторное масло повышает надежность изоляции, что очень важно при больших выходных мощностях.

Строение промышленного трансформатора с масляным охлаждением
Строение промышленного трансформатора с масляным охлаждением

Разделительный

Для разделительных трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования при повреждённой изоляции.

Разделительный
Разделительный трансформатор

Вращающиеся

Применяются для обмена сигналами с вращающимися барабанами. Конструктивно состоят из двух половинок магнитопровода с катушками. Эти части вращаются относительно друг друга. Обмен сигналами происходит при больших скоростях вращения.

Согласующий

Согласующие трансформаторы применяются для выравнивания сопротивлений между каскадами схем электроники. Сохраняя форму сигнала, они играют роль гальванической развязки.

Пик-трансформатор

С помощью пик-трансформатора синусоидальное напряжение преобразуется в импульсное. При этом импульсы меняют полярность с каждым полупериодом.

Сдвоенный дроссель

Особенностью сдвоенного дросселя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, по отношению стандартным дросселям. Устройства используются как входные фильтры в блоках питания, в звуко- и цифровой технике.

Сдвоенный дроссель
Сдвоенный дроссель

Сварочный

Помимо вышеперечисленных, существует понятие сварочные трансформаторы. Специализированные приборы для сварочных работ понижают напряжение бытовой сети при одновременном повышении тока, измеряемого тысячами ампер. Регулировка последнего осуществляется разделением обмоток на сектора, что отражается на индуктивном сопротивлении.

Сварочный
Сварочный трансформатор

Обозначение на схемах

Трансформаторы наглядно изображаются на электрических схемах. Символически изображаются обмотки, которые разделены магнитопроводом в виде жирной или тонкой линии (см. рис. 9).

Пример обозначения
Пример обозначения

На схемах трехфазных трансформаторов обмотки начинаются со стороны сердечника.

Области применения

Кроме преобразования напряжений в электрических сетях, трансформаторы часто применяются в блоках питания радиоэлектронных устройств. Преимущественно это автотрансформаторы, которые одновременно выдают несколько напряжений для различных узлов.

Сегодня все чаще используют бестрансформаторные блоки питания. Однако там где требуется питание мощным переменным током, без электромагнитных устройств не обойтись.

Расшифровка основных параметров

Разнообразие в конструкции и широкий диапазон параметров трансформаторов привели к необходимости их маркировки по специальному стандарту. Не имея под рукой технического описания, характеристики устройства можно выяснить по нанесённой на его поверхности информации, выраженной буквенно-цифровым кодом.

Маркировка силовых трансформаторов содержит 4 блока.

блоки расшифровка

Скачать и посмотреть ГОСТ 15150 можно здесь(откроется в новой вкладе в PDF формате):Смотреть файл

Расшифруем первые три блока:

расшифровка
Расшифровка маркировки: 1,2,3 блока

  1. Первая буква «А» прикреплена за автотрансформаторами. При её отсутствии буквы «Т» и «О» соответствуют трёхфазным и однофазным трансформаторам.
  2. Наличие далее буквы «Р» информирует об устройствах с расщеплённой обмоткой.
  3. Третья буква означает охлаждение, масляной естественной системе охлаждения присвоена литера «М». Естественному воздушному охлаждению выделена буква «С», масляное с принудительным обдувом обозначается «Д», с принудительной циркуляцией масла – «Ц». Сочетание «ДЦ» указывает на наличие принудительной циркуляции масла с одновременным воздушным обдувом.
  4. Литерой «Т» помечаются трёхобмоточные преобразователи.
  5. Последний знак характеризует особенности трансформатора:
  • «Н» – РПН(регулировка напряжения под нагрузкой);
  • пробел – переключение без возбуждения;
  • «Г» — грозозащищенный.

Интересные факты про трансформаторы

Трансформатор — это самый эффективный преобразователь. Его КПД (коэффициент полезного действия) может доходить до 99% (силовые трансформаторы). А вот у ДВС (двигатель внутреннего сгорания), КПД обычно не выше 30%.

Самый эффективный, но в тоже время и самый сложный в изготовлении — это тороидальный трансформатор. Он эффективен благодаря расположению катушек и магнитопроводу. Это усложняет процесс изготовления, особенно в промышленных масштабах.

Источники

  • https://www.asutpp.ru/transformator-prostymi-slovami.html
  • https://molotok34.ru/spravochnik/princip-raboty-transformatora.html
  • https://sesaga.ru/ustrojstvo-i-princip-raboty-transformatora.html
  • https://ProTransformatory.ru/vidy/naznachenie-i-ustrojstvo
  • https://www.RusElectronic.com/ustrojstvo-transformatora/
  • https://tyt-sxemi.ru/transformator/
  • https://zen.yandex.com/media/asutpp.ru/chto-takoe-transformator-iz-chego-sostoit-i-kak-rabotaet-5df523553639e600af66dcc7
  • https://ProFazu.ru/elektrosnabzhenie/elektroset/transformator-toka-printsip-raboty.html
  • https://OFaze.ru/elektrooborudovanie/transformator
[свернуть]
Поделиться:
Нет комментариев
Adblock
detector